The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength las...The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.展开更多
Laser-in duced breakdown spectroscopy(LIBS),firstly proposed in 1962 as Brech and Cross[I]successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and in...Laser-in duced breakdown spectroscopy(LIBS),firstly proposed in 1962 as Brech and Cross[I]successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and industry due to its unique analytical features such as little or no sample preparation,simultaneous multi-elemental analysis,and remote sensing etc[2-4].Restrained from the highcost and poor reliability of instruments back then,the research popularity of LIBS declined quickly after a few years of initial mania of LIBS study.Since the 1990s,benefiting from the significant development of the hardware setups including laser,spectrometer,and ICCD,the'LIBS fever,re-emerged with continuous progress achieved in various applications as well as fundamental studies for the past two decades.In 2004,James D Winefordner,a prestigious an alytical scientist,crowned LIBS as a'future superstar5 for chemical analysis[5],marking the great potential of LIBS.However,on the way of fully commercialization and industrialization,LIBS is facing three big challenges:(1)to improve the quantitative analysis performance,particularly the repeatability and reproducibility performance;(2)to reduce the instrumental cost;(3)to improve the long-term stability and robustness for industrial applications.To finally transform LIBS from'future superstar,to'superstar5,joint effort of worldwide LIBS community is needed[6].展开更多
基金supported by National Natural Science Foundation of China(No.51276100)National Basic Research Program of China(973 Program)(No.2013CB228501)
文摘The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.
文摘Laser-in duced breakdown spectroscopy(LIBS),firstly proposed in 1962 as Brech and Cross[I]successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and industry due to its unique analytical features such as little or no sample preparation,simultaneous multi-elemental analysis,and remote sensing etc[2-4].Restrained from the highcost and poor reliability of instruments back then,the research popularity of LIBS declined quickly after a few years of initial mania of LIBS study.Since the 1990s,benefiting from the significant development of the hardware setups including laser,spectrometer,and ICCD,the'LIBS fever,re-emerged with continuous progress achieved in various applications as well as fundamental studies for the past two decades.In 2004,James D Winefordner,a prestigious an alytical scientist,crowned LIBS as a'future superstar5 for chemical analysis[5],marking the great potential of LIBS.However,on the way of fully commercialization and industrialization,LIBS is facing three big challenges:(1)to improve the quantitative analysis performance,particularly the repeatability and reproducibility performance;(2)to reduce the instrumental cost;(3)to improve the long-term stability and robustness for industrial applications.To finally transform LIBS from'future superstar,to'superstar5,joint effort of worldwide LIBS community is needed[6].