期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
联合显著图强化形变配准网络
1
作者 傅泽山 秦斌杰 《中国医疗器械杂志》 2019年第6期397-400,409,共5页
配准图像中存在的结构对应性缺失与局部复杂大形变给非刚性图像配准准确寻找一一映射形变变换带来了极大挑战。传统配准方法以及基于深度学习配准方法都不能处理好此类图像配准异常难题。基于全局到局部的递进深度网络策略,该文提出了... 配准图像中存在的结构对应性缺失与局部复杂大形变给非刚性图像配准准确寻找一一映射形变变换带来了极大挑战。传统配准方法以及基于深度学习配准方法都不能处理好此类图像配准异常难题。基于全局到局部的递进深度网络策略,该文提出了配准图像联合显著结构上下文信息增强的无监督式深度配准网络。其中,全局到局部的卷积网络通过将待配准图像输入到结果形变场输出的复杂映射分解为两个更易求解的全局映射与局部映射网络,同时结合配准图像联合显著结构上下文信息双向加强网络的学习训练,实现了精确、鲁棒、高效的联合显著图强化形变配准网络,有效地解决了既存在结构对应性缺失又存在局部复杂大形变的图像配准难题。 展开更多
关键词 非刚性图像配准 对应性缺失 局部大形变 深度学习 联合显著图 联合显著结构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部