期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
公理化模糊共享近邻自适应谱聚类算法 被引量:11
1
作者 储德润 周治平 《智能系统学报》 CSCD 北大核心 2019年第5期897-904,共8页
针对传统的谱聚类算法通常利用高斯核函数作为相似性度量,且单纯以距离决定相似性不能充分表现原始数据中固有的模糊性、不确定性和复杂性,导致聚类性能降低的问题。提出了一种公理化模糊共享近邻自适应谱聚类算法,首先结合公理化模糊... 针对传统的谱聚类算法通常利用高斯核函数作为相似性度量,且单纯以距离决定相似性不能充分表现原始数据中固有的模糊性、不确定性和复杂性,导致聚类性能降低的问题。提出了一种公理化模糊共享近邻自适应谱聚类算法,首先结合公理化模糊集理论提出了一种模糊相似性度量方法,利用识别特征来衡量更合适的数据成对相似性,然后采用共享近邻的方法发现密集区域样本点分布的结构和密度信息,并且根据每个点所处领域的稠密程度自动调节参数σ,从而生成更强大的亲和矩阵,进一步提高聚类准确率。实验表明,相较于距离谱聚类、自适应谱聚类、模糊聚类方法和地标点谱聚类,所提算法有着更好的聚类性能。 展开更多
关键词 机器学习 数据挖掘 聚类分析 模糊聚类 谱聚类 公理化模糊集理论 共享最近邻 尺度参数
下载PDF
加权PageRank改进地标表示的自编码谱聚类算法 被引量:2
2
作者 储德润 周治平 《智能系统学报》 CSCD 北大核心 2020年第2期302-309,共8页
针对传统谱聚类算法在处理大规模数据集时,聚类精度低并且存在相似度矩阵存储开销大和拉普拉斯矩阵特征分解计算复杂度高的问题。提出了一种加权PageRank改进地标表示的自编码谱聚类算法,首先选取数据亲和图中权重最高的节点作为地标点... 针对传统谱聚类算法在处理大规模数据集时,聚类精度低并且存在相似度矩阵存储开销大和拉普拉斯矩阵特征分解计算复杂度高的问题。提出了一种加权PageRank改进地标表示的自编码谱聚类算法,首先选取数据亲和图中权重最高的节点作为地标点,以选定的地标点与其他数据点之间的相似关系来逼近相似度矩阵作为叠加自动编码器的输入。然后利用聚类损失同时更新自动编码器和聚类中心的参数,从而实现可扩展和精确的聚类。实验表明,在几种典型的数据集上,所提算法与地标点谱聚类算法和深度谱聚类算法相比具有更好的聚类性能。 展开更多
关键词 机器学习 数据挖掘 聚类分析 地标点聚类 谱聚类 加权PageRank 自动编码器 聚类损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部