期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
神经网络在SINS/GPS组合定位中的应用 被引量:1
1
作者 储诚涛 吴峻 《全球定位系统》 CSCD 2021年第2期104-110,共7页
地籍测量中,单一系统无法满足定位要求,组合定位技术应运而生.其中,捷联惯性导航系统(SINS)和GPS组合定位应用最为广泛.在卫星信号受到干扰失效区域,系统进入纯SINS解算,定位误差会逐渐累积,无法满足定位精度要求.针对此问题,提出一种... 地籍测量中,单一系统无法满足定位要求,组合定位技术应运而生.其中,捷联惯性导航系统(SINS)和GPS组合定位应用最为广泛.在卫星信号受到干扰失效区域,系统进入纯SINS解算,定位误差会逐渐累积,无法满足定位精度要求.针对此问题,提出一种长短期记忆(LSTM)神经网络辅助的组合定位算法.根据LSTM神经网络能够有效运用于长距离时间序列的特性,在GPS有效区域,用卡尔曼滤波(KF)算法对SINS/GPS信号进行数据融合得到精确定位信息,同时利用惯性测量单元(IMU)、GPS和SINS输出信息对神经网络进行训练;在GPS失效区域,利用训练好的神经网络预测GPS位置信息,使得系统能继续用卡尔曼滤波器滤波.最后结合地籍测量特点,设计了仿真实验,证明了该算法在GPS信号失效时可以有效抑制系统误差发散、提高定位精度,在不同运动状态下依然可以满足定位精度要求、鲁棒性强. 展开更多
关键词 卡尔曼滤波(KF) 组合定位 地籍测量 信号失效 神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部