本文采用组合数学的方法,利用第二类Stirling数和Bernoulli数给出级数 sum for k=1 to ∞ k^mξ(k),sum for k=1 to ∞ k^mξ(2k)及sum for k=1 to ∞(2k+1)mξ(2k+1)(其中m≥1,ξ(x)...本文采用组合数学的方法,利用第二类Stirling数和Bernoulli数给出级数 sum for k=1 to ∞ k^mξ(k),sum for k=1 to ∞ k^mξ(2k)及sum for k=1 to ∞(2k+1)mξ(2k+1)(其中m≥1,ξ(x)=ξ(x)-1) 的求和公式.这些公式表述简洁并有鲜明的规律性。展开更多
文摘本文采用组合数学的方法,利用第二类Stirling数和Bernoulli数给出级数 sum for k=1 to ∞ k^mξ(k),sum for k=1 to ∞ k^mξ(2k)及sum for k=1 to ∞(2k+1)mξ(2k+1)(其中m≥1,ξ(x)=ξ(x)-1) 的求和公式.这些公式表述简洁并有鲜明的规律性。