期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于近端策略优化的RFID室内定位算法 被引量:4
1
作者 李丽 郑嘉利 +1 位作者 罗文聪 全艺璇 《计算机科学》 CSCD 北大核心 2021年第4期274-281,共8页
针对在动态射频识别(Radio Frequency Identification,RFID)室内定位环境中,传统的室内定位模型会随着定位目标数量的增加而导致定位误差增大、计算复杂度上升的问题,文中提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)... 针对在动态射频识别(Radio Frequency Identification,RFID)室内定位环境中,传统的室内定位模型会随着定位目标数量的增加而导致定位误差增大、计算复杂度上升的问题,文中提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)的RFID室内定位算法。该算法将室内定位过程看作马尔可夫决策过程,首先将动作评价与随机动作相结合,然后进一步最大化动作回报值,最后选择最优坐标值。其同时引入剪切概率比,首先将动作限制在一定范围内,交替使用采样后与采样前的新旧动作,然后使用随机梯度对多个时期的动作策略进行小批量更新,并使用评价网络对动作进行评估,最后通过训练得到PPO定位模型。该算法在有效减少定位误差、提高定位效率的同时,具备更快的收敛速度,特别是在处理大量定位目标时,可大大降低计算复杂度。实验结果表明,本文提出的算法与其他的RFID室内定位算法(如Twin Delayed Deep Deterministic Policy Gradient(TD3),Deep Deterministic Policy Gradient(DDPG),Actor Critic using Kronecker-Factored Trust Region(ACKTR))相比,定位平均误差分别下降了36.361%,30.696%,28.167%,定位稳定性分别提高了46.691%,34.926%,16.911%,计算复杂度分别降低了84.782%7,70.213%,63.158%。 展开更多
关键词 RFID 室内定位 深度强化学习 剪切概率比
下载PDF
基于改进型灰狼算法的RFID网络规划 被引量:3
2
作者 全艺璇 郑嘉利 +2 位作者 罗文聪 林子涵 谢孝德 《计算机科学》 CSCD 北大核心 2021年第1期253-257,共5页
随着物联网技术的飞速发展,射频识别(Radio Frequency Identification,RFID)系统因具有非接触、快速识别等优点而成为了解决物联网问题的首选方案。RFID网络规划问题要考虑多个目标,被证明是多目标优化的问题。群体智能(Swarm Intellige... 随着物联网技术的飞速发展,射频识别(Radio Frequency Identification,RFID)系统因具有非接触、快速识别等优点而成为了解决物联网问题的首选方案。RFID网络规划问题要考虑多个目标,被证明是多目标优化的问题。群体智能(Swarm Intelligence,SI)算法在解决多目标优化问题方面得到了广泛的关注。文中提出了一种改进型灰狼算法(Improved Grey Wolf Optimizer,IGWO),利用高斯变异算子和惯性常量策略来实现RFID网络规划。通过建立优化模型,在满足标签100%覆盖率、部署更少的阅读器、避免信号干扰、消耗更少的功率4个目标的基础上,将所提算法与粒子群算法(Particle Swarm Optimization,PSO)、遗传算法(Genetic Algorithm,GA)、帝王蝶算法(Monarch Butterfly Algorithm,MMBO)进行了对比分析。实验结果表明,灰狼算法在RFID网络规划时表现更优异,在相同的实验环境下,相较于其他算法,IGWO的适应度值比GA提高了20.2%,比PSO提高了13.5%,比MMBO提高了9.66%;并且覆盖的标签数更多,可以更有效地求出最优化方案。 展开更多
关键词 射频识别 网络规划 灰狼算法 惯性常量 高斯变异
下载PDF
基于改进型多目标樽海鞘群算法的RFID阅读器天线优化部署
3
作者 罗文聪 郑嘉利 +2 位作者 全艺璇 谢孝德 林子涵 《计算机科学》 CSCD 北大核心 2021年第9期292-297,共6页
随着射频识别(Radio Frequency Identification,RFID)技术的飞速发展,在各种特殊的环境下(如工厂、仓库、监狱等),对RFID阅读器天线优化部署的需求开始受到广泛关注。针对目前RFID阅读器天线部署中存在的部署难度大、约束条件多且不易... 随着射频识别(Radio Frequency Identification,RFID)技术的飞速发展,在各种特殊的环境下(如工厂、仓库、监狱等),对RFID阅读器天线优化部署的需求开始受到广泛关注。针对目前RFID阅读器天线部署中存在的部署难度大、约束条件多且不易找到最优解和Pareto前沿等问题,文中提出了一种基于改进型多目标樽海鞘群算法(Multi-objective Salp Swarm Algorithm,MSSA)的RFID阅读器天线优化部署方法。预先构建多目标RFID阅读器天线优化部署模型,设定优化目标;多目标樽海鞘群算法对RFID阅读器天线优化部署模型进行优化训练,引入分离算子以优化搜索能力,并通过迭代不断寻找满足条件的非支配解,构建满足条件的Pareto解集,其即为优化的结果。实验数据表明,MSSA算法求解时无需先验知识和设置加权系数,收敛速度快;在相同实验环境下,MSSA算法与带观察者机制的蝙蝠(BA-OM)算法、粒子群(PSO)算法、细菌觅食优化(MC-BFO)算法相比,覆盖率分别提高了33%,28%,20%;与同类型的求Pareto解集的混合萤火虫(HMOFA)算法相比,MSSA算法的负载均衡提高了7.14%,经济效益提高了59.74%,阅读器干扰减少34.04%。 展开更多
关键词 RFID 优化部署 多目标樽海鞘群算法 分离算子 PARETO解集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部