期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征加权词向量的在线医疗评论情感分析
被引量:
7
1
作者
高慧颖
公孟秋
刘嘉唯
《北京理工大学学报》
CSCD
北大核心
2021年第9期999-1005,共7页
针对在线医疗评论文本具有行业专业性强、差异性大、不够规范等特点,提出一种基于特征加权词向量的在线医疗评论情感分析方法.利用Word2vec方法构建词向量模型,抽取情感词集合完善医疗服务领域情感词典,根据句法关系识别主题词与情感词...
针对在线医疗评论文本具有行业专业性强、差异性大、不够规范等特点,提出一种基于特征加权词向量的在线医疗评论情感分析方法.利用Word2vec方法构建词向量模型,抽取情感词集合完善医疗服务领域情感词典,根据句法关系识别主题词与情感词的依存关系,引入期望交叉熵因子,建立特征加权词向量模型,分析在线医疗评论的情感倾向.实验结果表明扩充的医疗服务情感词典在分析性能上的准确率、召回率以及F1值均高于基础情感词典,引入期望交叉熵因子后,基于特征加权词向量的情感分析方法在SVM分类上表现出更好的效果,体现了其在在线医疗评论挖掘领域的良好效用.
展开更多
关键词
情感分析
在线医疗评论
特征加权词向量
情感词典
主题模型
下载PDF
职称材料
基于改进BTM模型的医疗服务质量因素识别
被引量:
3
2
作者
高慧颖
公孟秋
于思佳
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2022年第11期1167-1174,共8页
针对在线医疗评论文本长度短、语义稀疏的特点,提出一种基于词共现分析的在线医疗评论主题挖掘模型。应用于短文本的BTM主题模型在词对的选择过程中缺少对词语语义相关性的考虑,通过引入词共现分析计算语义相关性,设定阈值筛选参与训练...
针对在线医疗评论文本长度短、语义稀疏的特点,提出一种基于词共现分析的在线医疗评论主题挖掘模型。应用于短文本的BTM主题模型在词对的选择过程中缺少对词语语义相关性的考虑,通过引入词共现分析计算语义相关性,设定阈值筛选参与训练的词对,进行医疗评论主题挖掘,基于主题一致性TC值和JS散度对比改进的COA-BTM主题模型与传统的BTM主题模型和LDA主题模型在医疗评论主题挖掘中的效果。实验结果表明改进的COA-BTM模型在主题一致性和主题质量上均具有更好的效果,证明了其在在线医疗评论挖掘领域的有效性。基于改进算法在医疗评论主题挖掘中的应用和SERVQUAL模型,更全面地识别了医疗服务质量影响因素。
展开更多
关键词
主题模型
在线医疗评论
词共现分析
COA-BTM模型
下载PDF
职称材料
题名
基于特征加权词向量的在线医疗评论情感分析
被引量:
7
1
作者
高慧颖
公孟秋
刘嘉唯
机构
北京理工大学管理与经济学院
出处
《北京理工大学学报》
CSCD
北大核心
2021年第9期999-1005,共7页
基金
国家自然科学基金资助项目(71972012)。
文摘
针对在线医疗评论文本具有行业专业性强、差异性大、不够规范等特点,提出一种基于特征加权词向量的在线医疗评论情感分析方法.利用Word2vec方法构建词向量模型,抽取情感词集合完善医疗服务领域情感词典,根据句法关系识别主题词与情感词的依存关系,引入期望交叉熵因子,建立特征加权词向量模型,分析在线医疗评论的情感倾向.实验结果表明扩充的医疗服务情感词典在分析性能上的准确率、召回率以及F1值均高于基础情感词典,引入期望交叉熵因子后,基于特征加权词向量的情感分析方法在SVM分类上表现出更好的效果,体现了其在在线医疗评论挖掘领域的良好效用.
关键词
情感分析
在线医疗评论
特征加权词向量
情感词典
主题模型
Keywords
sentiment analysis
online healthcare reviews
feature weighted word vector
sentiment lexicon
topic model
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于改进BTM模型的医疗服务质量因素识别
被引量:
3
2
作者
高慧颖
公孟秋
于思佳
机构
北京理工大学管理与经济学院
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2022年第11期1167-1174,共8页
基金
国家自然科学基金资助项目(71972012)。
文摘
针对在线医疗评论文本长度短、语义稀疏的特点,提出一种基于词共现分析的在线医疗评论主题挖掘模型。应用于短文本的BTM主题模型在词对的选择过程中缺少对词语语义相关性的考虑,通过引入词共现分析计算语义相关性,设定阈值筛选参与训练的词对,进行医疗评论主题挖掘,基于主题一致性TC值和JS散度对比改进的COA-BTM主题模型与传统的BTM主题模型和LDA主题模型在医疗评论主题挖掘中的效果。实验结果表明改进的COA-BTM模型在主题一致性和主题质量上均具有更好的效果,证明了其在在线医疗评论挖掘领域的有效性。基于改进算法在医疗评论主题挖掘中的应用和SERVQUAL模型,更全面地识别了医疗服务质量影响因素。
关键词
主题模型
在线医疗评论
词共现分析
COA-BTM模型
Keywords
topic model
online medical reviews
word co-occurrence analysis
COA-BTM model
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征加权词向量的在线医疗评论情感分析
高慧颖
公孟秋
刘嘉唯
《北京理工大学学报》
CSCD
北大核心
2021
7
下载PDF
职称材料
2
基于改进BTM模型的医疗服务质量因素识别
高慧颖
公孟秋
于思佳
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部