We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the...We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices.展开更多
Plasmonics could provide compact and powerful solutions for manipulating light in deep-subwavelength dimensions,which is promising for a great range of nanophotonic technologies such as plasmonic rulers and sensors.Ho...Plasmonics could provide compact and powerful solutions for manipulating light in deep-subwavelength dimensions,which is promising for a great range of nanophotonic technologies such as plasmonic rulers and sensors.However,the effective area of enhanced localized field induced by surface plasmon polaritons is typically restricted to the structural boundaries.In this work,we propose a method to generate high quality-factor extended electromagnetic fields via hybridizing the superradiant state and the quasi bound state in the continuum of graphene metasurfaces.The coupling interaction involved operates as a three-level system with multiple sharp resonances immune to the polarization,which holds great promise for developing nanodevices with high sensing capacity in two dimensions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62275271,12272407,and 62275269)the National Key Research and Development Program of China (Grant No.2022YFF0706005)+1 种基金the Natural Science Foundation of Hunan Province,China (Grant Nos.2023JJ40683,2022JJ40552,and 2020JJ5646)the Program for New Century Excellent Talents in University,China (Grant No.NCET-12-0142)。
文摘We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.12104339,62174118,1210040201,U20A20164,and 61975177)Open Fund of State Key Laboratory of Millimeter Wave,Southeast University(No.K202216)+1 种基金International Postdoctoral Exchange Fellowship Program(Talent-Introduction)China Postdoctoral Science Foundation(Nos.258023 and 2021M702403).
文摘Plasmonics could provide compact and powerful solutions for manipulating light in deep-subwavelength dimensions,which is promising for a great range of nanophotonic technologies such as plasmonic rulers and sensors.However,the effective area of enhanced localized field induced by surface plasmon polaritons is typically restricted to the structural boundaries.In this work,we propose a method to generate high quality-factor extended electromagnetic fields via hybridizing the superradiant state and the quasi bound state in the continuum of graphene metasurfaces.The coupling interaction involved operates as a three-level system with multiple sharp resonances immune to the polarization,which holds great promise for developing nanodevices with high sensing capacity in two dimensions.