文章引入动态感兴趣区域(Dynamic Region of Interest,DROI)策略,提高基于区域卷积神经网络的快速目标检测(Faster Region-based Convolutional Neural Networks,Faster R-CNN)模型在实时视频目标检测任务中的性能。首先,分析Faster R-C...文章引入动态感兴趣区域(Dynamic Region of Interest,DROI)策略,提高基于区域卷积神经网络的快速目标检测(Faster Region-based Convolutional Neural Networks,Faster R-CNN)模型在实时视频目标检测任务中的性能。首先,分析Faster R-CNN;其次,提出一种基于DROI的优化方法,通过动态调整感兴趣区域以适应目标的运动和变化;最后,在MOT17数据集上进行实验,验证该优化方法的有效性。展开更多
文摘文章引入动态感兴趣区域(Dynamic Region of Interest,DROI)策略,提高基于区域卷积神经网络的快速目标检测(Faster Region-based Convolutional Neural Networks,Faster R-CNN)模型在实时视频目标检测任务中的性能。首先,分析Faster R-CNN;其次,提出一种基于DROI的优化方法,通过动态调整感兴趣区域以适应目标的运动和变化;最后,在MOT17数据集上进行实验,验证该优化方法的有效性。