Interface can be a fertile ground for exotic quantum states,including topological superconductivity,Majorana mode,fractal quantum Hall effect,unconventional superconductivity,Mott insulator,etc.Here we grow single-uni...Interface can be a fertile ground for exotic quantum states,including topological superconductivity,Majorana mode,fractal quantum Hall effect,unconventional superconductivity,Mott insulator,etc.Here we grow single-unit-cell(1UC)FeTe film on NbSe_(2)single crystal by molecular beam epitaxy(MBE)and investigate the film in-situ with a home-made cryogenic scanning tunneling microscopy(STM)and non-contact atomic force microscopy(AFM)combined system.We find different stripe-like superlattice modulations on grown FeTe film with different misorientation angles with respect to NbSe_(2)substrate.We show that these stripe-like superlattice modulations can be understood as moirépattern forming between FeTe film and NbSe_(2)substrate.Our results indicate that the interface between Fe Te and NbSe2 is atomically sharp.By STM-AFM combined measurement,we suggest that the moirésuperlattice modulations have an electronic origin when the misorientation angle is relatively small(≤3°)and have structural relaxation when the misorientation angle is relatively large(≥10°).展开更多
We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the bin...We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh^40 K,which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization.However,the Fermi vector and the Fermi surface volume have little change around Tcoh,which challenges the widely believed evolution from a hightemperature small Fermi surface to a low-temperature large Fermi surface.Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0302400,2016YFA0300602,and2017YFA0302903)the National Natural Science Foundation of China(Grant No.11227903)+2 种基金the Beijing Municipal Science and Technology Commission,China(Grant Nos.Z181100004218007 and Z191100007219011)the National Basic Research Program of China(Grant No.2015CB921304)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB07000000,XDB28000000,and XDB33000000)。
文摘Interface can be a fertile ground for exotic quantum states,including topological superconductivity,Majorana mode,fractal quantum Hall effect,unconventional superconductivity,Mott insulator,etc.Here we grow single-unit-cell(1UC)FeTe film on NbSe_(2)single crystal by molecular beam epitaxy(MBE)and investigate the film in-situ with a home-made cryogenic scanning tunneling microscopy(STM)and non-contact atomic force microscopy(AFM)combined system.We find different stripe-like superlattice modulations on grown FeTe film with different misorientation angles with respect to NbSe_(2)substrate.We show that these stripe-like superlattice modulations can be understood as moirépattern forming between FeTe film and NbSe_(2)substrate.Our results indicate that the interface between Fe Te and NbSe2 is atomically sharp.By STM-AFM combined measurement,we suggest that the moirésuperlattice modulations have an electronic origin when the misorientation angle is relatively small(≤3°)and have structural relaxation when the misorientation angle is relatively large(≥10°).
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0401000,2015CB921300,2016YFA0300303,2016YFA0401002 and 2017YFA0303103the National Natural Science Foundation of China under Grant Nos 11674371,11774401 and 11874330+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07000000the Beijing Municipal Science and Technology Commission under Grant No Z171100002017018the Hundred-Talent Program(type C)of the Chinese Academy of Sciencesthe Sino-Swiss Science and Technology Cooperation under Grant No IZLCZ2-170075the Swiss National Science Foundation under Grant No 200021-159678
文摘We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh^40 K,which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization.However,the Fermi vector and the Fermi surface volume have little change around Tcoh,which challenges the widely believed evolution from a hightemperature small Fermi surface to a low-temperature large Fermi surface.Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.