为解决滚动轴承损伤程度难以识别的问题,提高故障诊断的准确率,将特征选择方法应用到滚动轴承故障诊断中。在建立多域特征集的基础上提出一种基于MRMD(Max Relevance Max Distance)评价准则的特征选择方法完成对轴承损伤程度的评估。首...为解决滚动轴承损伤程度难以识别的问题,提高故障诊断的准确率,将特征选择方法应用到滚动轴承故障诊断中。在建立多域特征集的基础上提出一种基于MRMD(Max Relevance Max Distance)评价准则的特征选择方法完成对轴承损伤程度的评估。首先从原始信号中提取能够表征轴承运行状态变化的时频域统计特征并建立多域特征集;然后利用MRMD特征选择方法去除特征集中的无关特征和冗余特征,筛选出敏感特征;最后将筛选出的故障特征样本输入到概率神经网络(PNN)中得到损伤程度的评估结果,利用该特征选择方法可以实现轴承裂纹损伤程度的识别。以分类器正确率为依据,验证了基于MRMD特征选择方法的有效性和优越性。展开更多
文摘为解决滚动轴承损伤程度难以识别的问题,提高故障诊断的准确率,将特征选择方法应用到滚动轴承故障诊断中。在建立多域特征集的基础上提出一种基于MRMD(Max Relevance Max Distance)评价准则的特征选择方法完成对轴承损伤程度的评估。首先从原始信号中提取能够表征轴承运行状态变化的时频域统计特征并建立多域特征集;然后利用MRMD特征选择方法去除特征集中的无关特征和冗余特征,筛选出敏感特征;最后将筛选出的故障特征样本输入到概率神经网络(PNN)中得到损伤程度的评估结果,利用该特征选择方法可以实现轴承裂纹损伤程度的识别。以分类器正确率为依据,验证了基于MRMD特征选择方法的有效性和优越性。