期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度时间序列特征融合的西安市2015—2020年供暖季雾霾重污染过程预警 被引量:1
1
作者 王英 冉进业 +2 位作者 张今 杨鑫 张浩 《化工进展》 EI CAS CSCD 北大核心 2022年第10期5685-5694,共10页
为准确预测雾霾重污染演变过程,本文提出深度时间序列特征融合模型(long short-term memory and multivariate linear regression,LSTM-MLR)并对西安市PM浓度进行了临近预测。该模型利用不同超参数长短期记忆网络(long short-term memor... 为准确预测雾霾重污染演变过程,本文提出深度时间序列特征融合模型(long short-term memory and multivariate linear regression,LSTM-MLR)并对西安市PM浓度进行了临近预测。该模型利用不同超参数长短期记忆网络(long short-term memory,LSTM)提取PM前体和气象因素时间序列中的深度特征;采用多元线性回归(multivariate linear regression,MLR)形式融合LSTM单元输出的深度时间序列特征,最终输出PM浓度预测值。为评估模型性能,采用西安市2015年1月至2020年3月采暖季数据进行建模并计算未来3h、6h、12h、24h的PM浓度预测精度。结果表明:LSTM-MLR模型对雾霾严重污染样本的准确预测率分别为94.12%、85.29%、77.57%和51.10%,显著高于随机森林(random forest,RF)、支持向量回归(support vector regression,SVR)、MLR、单变量LSTM(LSTM_PM)、多变量LSTM(M_LSTM)和LSTM-RF(long short-term memory and random forest);融合系数显示当前PM浓度对未来PM浓度的影响随预测步长的增加从80.89%(t+3)急剧降低至16.34%(t+24),前体浓度影响力从5.23%(t+3)上升至29.43%(t+24),说明提前控制前体物排放强度对雾霾重污染事件消峰降速效果具有显著影响。 展开更多
关键词 雾霾重污染 LSTM-MLR模型 预测 多尺度 神经网络
下载PDF
基于ASPP-SOLOv2的复杂场景下透明玻璃仪器实例分割
2
作者 葛建统 杨鑫 +3 位作者 祝模芮 冉进业 翟持 张浩 《高校化学工程学报》 EI CAS CSCD 北大核心 2023年第6期962-970,共9页
针对深度学习方法对复杂背景下实验室透明玻璃仪器识别效果不佳的问题,建立包含1548张含常用玻璃化学仪器图像的实验室复杂场景实例分割数据集,提出基于动态快速实例分割算法2.0版(SOLOv2)的透明仪器实例分割算法,利用空洞空间金字塔池... 针对深度学习方法对复杂背景下实验室透明玻璃仪器识别效果不佳的问题,建立包含1548张含常用玻璃化学仪器图像的实验室复杂场景实例分割数据集,提出基于动态快速实例分割算法2.0版(SOLOv2)的透明仪器实例分割算法,利用空洞空间金字塔池化(ASPP)融合多尺度信息,通过自下而上增强方式提高底层信息利用率,交并比阈值大于50%的精确率最终达到90.50%,类平均精度(APav)达到76.00%,比原始方法平均精度提高8.7%。消融实验表明ASPP的引入增强透明仪器的几何、边缘等特征的表示能力,提高对密集重叠目标的分割精度。该方法使APav提高22.58%,在骨干网络特征分辨率为原图1/16的阶段,加入该模块可实现浅层信息和高阶语义信息的最佳平衡。 展开更多
关键词 实例分割 透明玻璃仪器数据集 动态快速实例分割 空洞空间金字塔池化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部