为了更好地发挥风廓线雷达在高空探测中的优势,本文利用2014—2017年中国科学院大气物理研究所淮南气候环境综合观测试验站(Huainan Climate and Environment Observatory,HCEO)的ST风廓线雷达探测资料,评估在不同探测模式组合下雷达的...为了更好地发挥风廓线雷达在高空探测中的优势,本文利用2014—2017年中国科学院大气物理研究所淮南气候环境综合观测试验站(Huainan Climate and Environment Observatory,HCEO)的ST风廓线雷达探测资料,评估在不同探测模式组合下雷达的探测性能,探讨探测气象环境对其影响,研判实际应用中探测模式组合的适用性。结果表明:ST风廓线雷达选用高、低模式与转换高度进行模式组合,可实现不同探测目的,但不同组合的探测性能存在差异,主要呈现两种变化规律:一种是模式转换前探测性能逐渐降低,而转换后迅速升高,进入高模式后随高度逐渐降低;另一种是转换过程中探测性能未发生明显改变,到高模式某一高度后逐渐降低。另外,秋冬季临近转换高度探测性能的降低程度逐渐加大;降水使对流层中低层探测性能降低。因此,可以依据雷达对大气边界层、对流层以及平流层的探测性能,选择合适的探测模式组合。展开更多
文摘为了更好地发挥风廓线雷达在高空探测中的优势,本文利用2014—2017年中国科学院大气物理研究所淮南气候环境综合观测试验站(Huainan Climate and Environment Observatory,HCEO)的ST风廓线雷达探测资料,评估在不同探测模式组合下雷达的探测性能,探讨探测气象环境对其影响,研判实际应用中探测模式组合的适用性。结果表明:ST风廓线雷达选用高、低模式与转换高度进行模式组合,可实现不同探测目的,但不同组合的探测性能存在差异,主要呈现两种变化规律:一种是模式转换前探测性能逐渐降低,而转换后迅速升高,进入高模式后随高度逐渐降低;另一种是转换过程中探测性能未发生明显改变,到高模式某一高度后逐渐降低。另外,秋冬季临近转换高度探测性能的降低程度逐渐加大;降水使对流层中低层探测性能降低。因此,可以依据雷达对大气边界层、对流层以及平流层的探测性能,选择合适的探测模式组合。