-
题名基于全局时空特性的城市路网交通速度预测模型
被引量:5
- 1
-
-
作者
冯思芸
施振佺
曹阳
-
机构
南通大学信息科学技术学院
南通大学交通与土木工程学院
-
出处
《计算机工程》
CAS
CSCD
北大核心
2022年第5期112-117,共6页
-
基金
国家自然科学基金面上项目“面向流量预测的交通智脑关键技术研究”(61771265)
江苏省“333工程”科研项目“基于多源异构交通大数据的交通流量预测研究”(BRA2017475)
+1 种基金
江苏省“青蓝工程”项目
南通市“226”科研项目“基于时空融合的灰色多变量城市路网短时交通流预测研究”(131320633045)。
-
文摘
城市路网交通速度预测是智能交通系统中的重要组成部分,其可为出行者提供实时的交通信息,对提升道路通行能力具有重要意义。现有基于图卷积网络的预测模型一定程度上加强了对一阶相邻路段间空间关联程度的挖掘,但在非一阶相邻路段关联度大于一阶相邻路段关联度的情况下,如果仍输入原始的邻接矩阵,会遗失一些相对重要的路段空间信息,无法得到较好的预测结果。为准确挖掘城市路网中的时空特性,提出一种基于全局图卷积和门控循环单元的城市路网交通速度预测模型G-GCGRU。考虑全局路网下非一阶相邻路段间的空间影响程度,利用相关性分析方法计算得到路段间的关联度矩阵,并作为新的卷积方式进一步加深对空间特征的挖掘,在此基础上,采用门控循环单元方法提取路网时间特征。使用深圳市罗湖区城市路网车速数据进行实验,结果表明,该模型预测性能优于图卷积网络(GCN)、门控循环单元(GRU)和GCN-GRU混合模型,以均方根误差为评价指标,预测精度分别提高25.3%、4.7%和2.1%。
-
关键词
智能交通系统
交通速度预测
图卷积网络
城市路网
全局时空特征
-
Keywords
Intelligent Transportation System(ITS)
traffic speed prediction
Graph Convolutional Network(GCN)
urban road network
global spatio-temporal characteristics
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-