为了消除噪声对滚动轴承故障诊断结果的影响,提出了一种改进形态滤波与局域均值分解(Local mean decomposition,LMD)结合的滚动轴承故障诊断方法,该方法首先利用LMD对滚动轴承的故障信号进行分解,采用峭度和相关系数准则剔除多余的低频...为了消除噪声对滚动轴承故障诊断结果的影响,提出了一种改进形态滤波与局域均值分解(Local mean decomposition,LMD)结合的滚动轴承故障诊断方法,该方法首先利用LMD对滚动轴承的故障信号进行分解,采用峭度和相关系数准则剔除多余的低频分量,再用改进的形态滤波对选出来的PF分量进行滤波解调。最后,对滤波后的信号进行Hilbert包络谱分析,并且与LMD-Hilbert包络谱和直接Hilbert包络谱的结果进行对比分析。实验结果表明:该方法能够有效地提取滚动轴承故障的特征,诊断轴承故障位置。展开更多
针对机械故障声发射信号特征提取的问题,提出了一种局部均值分解(local mean decomposition,LMD)和改进的小波阈值去噪相结合的方法;并应用于滚动轴承的故障诊断。首先,把改进小波阈值与三种小波阈值去噪方法进行比较分析。通过仿真信...针对机械故障声发射信号特征提取的问题,提出了一种局部均值分解(local mean decomposition,LMD)和改进的小波阈值去噪相结合的方法;并应用于滚动轴承的故障诊断。首先,把改进小波阈值与三种小波阈值去噪方法进行比较分析。通过仿真信号表明,改进小波阈值方法能更为有效地去除噪声。其次,采用LMD方法将原始轴承故障的声发射信号分解,分解为若干个乘积函数(production function,PF)的线性组合,通过相关系数原则选取能够反映故障特征的PF分量,利用改进小波阈值去噪法对选出的PF分量进行进一步去噪。最后,对去噪后的声发射信号进行包络谱分析,诊断轴承故障的位置。通过滚动轴承单一故障和耦合故障的声发射实验验证了该方法的有效性。展开更多
文摘为了消除噪声对滚动轴承故障诊断结果的影响,提出了一种改进形态滤波与局域均值分解(Local mean decomposition,LMD)结合的滚动轴承故障诊断方法,该方法首先利用LMD对滚动轴承的故障信号进行分解,采用峭度和相关系数准则剔除多余的低频分量,再用改进的形态滤波对选出来的PF分量进行滤波解调。最后,对滤波后的信号进行Hilbert包络谱分析,并且与LMD-Hilbert包络谱和直接Hilbert包络谱的结果进行对比分析。实验结果表明:该方法能够有效地提取滚动轴承故障的特征,诊断轴承故障位置。
文摘针对机械故障声发射信号特征提取的问题,提出了一种局部均值分解(local mean decomposition,LMD)和改进的小波阈值去噪相结合的方法;并应用于滚动轴承的故障诊断。首先,把改进小波阈值与三种小波阈值去噪方法进行比较分析。通过仿真信号表明,改进小波阈值方法能更为有效地去除噪声。其次,采用LMD方法将原始轴承故障的声发射信号分解,分解为若干个乘积函数(production function,PF)的线性组合,通过相关系数原则选取能够反映故障特征的PF分量,利用改进小波阈值去噪法对选出的PF分量进行进一步去噪。最后,对去噪后的声发射信号进行包络谱分析,诊断轴承故障的位置。通过滚动轴承单一故障和耦合故障的声发射实验验证了该方法的有效性。