电解水是可持续绿色制氢的重要方法,但阳极缓慢的析氧反应(OER)严重阻碍电解水能量转化效率的提升,利用氧化电位较低的硫离子氧化反应(SOR)替代OER与阴极析氢反应耦合可以实现能耗的大幅降低。本文通过共沉淀法成功制备了一种钴基沸石...电解水是可持续绿色制氢的重要方法,但阳极缓慢的析氧反应(OER)严重阻碍电解水能量转化效率的提升,利用氧化电位较低的硫离子氧化反应(SOR)替代OER与阴极析氢反应耦合可以实现能耗的大幅降低。本文通过共沉淀法成功制备了一种钴基沸石咪唑酯骨架材料(ZIF-67),通过XRD、SEM、XPS测试手段对催化材料进行了物相分析,结果表明制备的ZIF-67催化材料由许多堆积在一起的立方体纳米颗粒组成。在三电极体系中对其进行SOR催化性能测试,将ZIF-67涂敷在泡沫镍基底上作为工作电极(ZIF-67/NF),ZIF-67/NF仅需0.361 V vs.RHE的电压就可以达到50 mA·cm^(-2)的电流密度,其电催化活性远优于Co(OH)2/NF和NF。ZIF-67/NF还表现出最低的Tafel斜率(73 mA·dec^(-1))和最小的电化学阻抗,并展现出良好的稳定性。此外,对基于SOR的两电极耦合制氢体系的电化学性能进行了测试,发现所需施加电压远小于传统的全水解制氢系统,为超低能耗制氢提供一种切实可行的方案。展开更多
文摘电解水是可持续绿色制氢的重要方法,但阳极缓慢的析氧反应(OER)严重阻碍电解水能量转化效率的提升,利用氧化电位较低的硫离子氧化反应(SOR)替代OER与阴极析氢反应耦合可以实现能耗的大幅降低。本文通过共沉淀法成功制备了一种钴基沸石咪唑酯骨架材料(ZIF-67),通过XRD、SEM、XPS测试手段对催化材料进行了物相分析,结果表明制备的ZIF-67催化材料由许多堆积在一起的立方体纳米颗粒组成。在三电极体系中对其进行SOR催化性能测试,将ZIF-67涂敷在泡沫镍基底上作为工作电极(ZIF-67/NF),ZIF-67/NF仅需0.361 V vs.RHE的电压就可以达到50 mA·cm^(-2)的电流密度,其电催化活性远优于Co(OH)2/NF和NF。ZIF-67/NF还表现出最低的Tafel斜率(73 mA·dec^(-1))和最小的电化学阻抗,并展现出良好的稳定性。此外,对基于SOR的两电极耦合制氢体系的电化学性能进行了测试,发现所需施加电压远小于传统的全水解制氢系统,为超低能耗制氢提供一种切实可行的方案。