期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合支持向量机与半监督K-means的新型学习算法
被引量:
7
1
作者
杜阳
姜震
冯路捷
《计算机应用》
CSCD
北大核心
2019年第12期3462-3466,共5页
半监督学习结合少量有标签样本和大量无标签样本,可以有效提高算法的泛化性能。传统的半监督支持向量机(SVM)算法在目标函数中引入无标签样本的依赖项来推动决策面通过低密度区域,但往往会带来高计算复杂度和局部最优解等问题。同时,半...
半监督学习结合少量有标签样本和大量无标签样本,可以有效提高算法的泛化性能。传统的半监督支持向量机(SVM)算法在目标函数中引入无标签样本的依赖项来推动决策面通过低密度区域,但往往会带来高计算复杂度和局部最优解等问题。同时,半监督K-means算法面临着如何有效利用监督信息进行质心的初始化及更新等问题。针对上述问题,提出了一种结合SVM和半监督K-means的新型学习算法(SKAS)。首先,提出一种改进的半监督K-means算法,从距离度量和质心迭代两个方面进行了改进;然后,设计了一种融合算法将半监督K-means算法与SVM相结合以进一步提升算法性能。在6个UCI数据集上的实验结果表明,所提算法在其中5个数据集上的运行结果都优于当前先进的半监督SVM算法和半监督K-means算法,且拥有最高的平均准确率。
展开更多
关键词
支持向量机
K-MEANS
半监督聚类
分类
融合
下载PDF
职称材料
题名
结合支持向量机与半监督K-means的新型学习算法
被引量:
7
1
作者
杜阳
姜震
冯路捷
机构
江苏大学计算机科学与通信工程学院
出处
《计算机应用》
CSCD
北大核心
2019年第12期3462-3466,共5页
基金
国家自然科学基金资助项目(61672268)
江苏大学高级人才科研启动基金资助项目(14JDG036)~~
文摘
半监督学习结合少量有标签样本和大量无标签样本,可以有效提高算法的泛化性能。传统的半监督支持向量机(SVM)算法在目标函数中引入无标签样本的依赖项来推动决策面通过低密度区域,但往往会带来高计算复杂度和局部最优解等问题。同时,半监督K-means算法面临着如何有效利用监督信息进行质心的初始化及更新等问题。针对上述问题,提出了一种结合SVM和半监督K-means的新型学习算法(SKAS)。首先,提出一种改进的半监督K-means算法,从距离度量和质心迭代两个方面进行了改进;然后,设计了一种融合算法将半监督K-means算法与SVM相结合以进一步提升算法性能。在6个UCI数据集上的实验结果表明,所提算法在其中5个数据集上的运行结果都优于当前先进的半监督SVM算法和半监督K-means算法,且拥有最高的平均准确率。
关键词
支持向量机
K-MEANS
半监督聚类
分类
融合
Keywords
Support Vector Machine(SVM)
K-means
semi-supervised clustering
classification
fusion
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合支持向量机与半监督K-means的新型学习算法
杜阳
姜震
冯路捷
《计算机应用》
CSCD
北大核心
2019
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部