Current induced spin-orbit torque(SOT)switching of magnetization is a promising technology for nonvolatile spintronic memory and logic applications.In this work,we systematically investigated the effect of Ta thicknes...Current induced spin-orbit torque(SOT)switching of magnetization is a promising technology for nonvolatile spintronic memory and logic applications.In this work,we systematically investigated the effect of Ta thickness on the magnetic properties,field-free switching and SOT efficiency in a ferromagnetically coupled Co/Ta/Co Fe B trilayer with perpendicular magnetic anisotropy.We found that both the anisotropy field and coercivity increase with increasing Ta thickness from0.15 nm to 0.4 nm.With further increase of Ta thickness to 0.5 nm,two-step switching is observed,indicating that the two magnetic layers are magnetically decoupled.Measurements of pulse-current induced magnetization switching and harmonic Hall voltages show that the critical switching current density increases while the field-free switching ratio and SOT efficiency decrease with increasing Ta thickness.Both the enhanced spin memory loss and reduced interlayer exchange coupling might be responsible for theβ_(DL)decrease as the Ta spacer thickness increases.The studied structure with the incorporation of a Co Fe B layer is able to realize field-free switching in the strong ferromagnetic coupling region,which may contribute to the further development of magnetic tunnel junctions for better memory applications.展开更多
基金Project supported by the‘Pioneer’and‘Leading Goose’Research and Development Program of Zhejiang Province,China(Grant No.2022C01053)the National Natural Science Foundation of China(Grant Nos.11874135,12104119+2 种基金12004090)Key Research and Development Program of Zhejiang Province,China(Grant No.2021C01039)Natural Science Foundation of Zhejiang Province,China(Grant Nos.LQ20F040005 and LQ21A050001)。
文摘Current induced spin-orbit torque(SOT)switching of magnetization is a promising technology for nonvolatile spintronic memory and logic applications.In this work,we systematically investigated the effect of Ta thickness on the magnetic properties,field-free switching and SOT efficiency in a ferromagnetically coupled Co/Ta/Co Fe B trilayer with perpendicular magnetic anisotropy.We found that both the anisotropy field and coercivity increase with increasing Ta thickness from0.15 nm to 0.4 nm.With further increase of Ta thickness to 0.5 nm,two-step switching is observed,indicating that the two magnetic layers are magnetically decoupled.Measurements of pulse-current induced magnetization switching and harmonic Hall voltages show that the critical switching current density increases while the field-free switching ratio and SOT efficiency decrease with increasing Ta thickness.Both the enhanced spin memory loss and reduced interlayer exchange coupling might be responsible for theβ_(DL)decrease as the Ta spacer thickness increases.The studied structure with the incorporation of a Co Fe B layer is able to realize field-free switching in the strong ferromagnetic coupling region,which may contribute to the further development of magnetic tunnel junctions for better memory applications.