期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于时序光谱重构的卷积神经网络遥感农作物分类
被引量:
5
1
作者
冯齐心
杨辽
+2 位作者
王伟胜
陈桃
黄双燕
《中国科学院大学学报(中英文)》
CSCD
北大核心
2020年第5期619-628,共10页
当前,基于时序特征提取的农作物遥感分类方法需要较多先验知识及人工干预,难以自动化,且易因忽略部分有效特征而导致精度降低。针对这些问题,提出基于时序光谱重构的卷积神经网络农作物分类法。为充分利用时间序列多光谱中丰富的作物物...
当前,基于时序特征提取的农作物遥感分类方法需要较多先验知识及人工干预,难以自动化,且易因忽略部分有效特征而导致精度降低。针对这些问题,提出基于时序光谱重构的卷积神经网络农作物分类法。为充分利用时间序列多光谱中丰富的作物物候与多光谱信息,对每个地面像元构造以时间维为纵轴、光谱维为横轴的时序光谱图,采用Adam梯度下降法与Dropout 40%连接率优化后的卷积神经网络对时序光谱图进行分类。对比实验结果表明,该方法可有效减少“椒盐”噪声的产生,且地块边界轮廓线清晰,总体分类精度达到95.12%,高于时间序列多光谱+随机森林(88.58%)、时间序列NDVI+随机森林(90.25%)、时间序列NDVI+卷积神经网络(91.79%)等对照实验组;对于“异物同谱”现象明显的春玉米与番茄,该方法的F 1-score分别达到95.9%与89.9%,相比各对照组均有较大幅度的提高。该研究结果可为遥感农作物的自动化精细制图提供参考。
展开更多
关键词
农作物分类
卷积神经网络
遥感
Sentinel-2A
时间序列
特征提取
下载PDF
职称材料
题名
基于时序光谱重构的卷积神经网络遥感农作物分类
被引量:
5
1
作者
冯齐心
杨辽
王伟胜
陈桃
黄双燕
机构
中国科学院新疆生态与地理研究所
中国科学院大学
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2020年第5期619-628,共10页
基金
国家重点研发计划项目(2017YFB0504204)资助。
文摘
当前,基于时序特征提取的农作物遥感分类方法需要较多先验知识及人工干预,难以自动化,且易因忽略部分有效特征而导致精度降低。针对这些问题,提出基于时序光谱重构的卷积神经网络农作物分类法。为充分利用时间序列多光谱中丰富的作物物候与多光谱信息,对每个地面像元构造以时间维为纵轴、光谱维为横轴的时序光谱图,采用Adam梯度下降法与Dropout 40%连接率优化后的卷积神经网络对时序光谱图进行分类。对比实验结果表明,该方法可有效减少“椒盐”噪声的产生,且地块边界轮廓线清晰,总体分类精度达到95.12%,高于时间序列多光谱+随机森林(88.58%)、时间序列NDVI+随机森林(90.25%)、时间序列NDVI+卷积神经网络(91.79%)等对照实验组;对于“异物同谱”现象明显的春玉米与番茄,该方法的F 1-score分别达到95.9%与89.9%,相比各对照组均有较大幅度的提高。该研究结果可为遥感农作物的自动化精细制图提供参考。
关键词
农作物分类
卷积神经网络
遥感
Sentinel-2A
时间序列
特征提取
Keywords
crop classification
convolutional neural network
remote sensing
Sentinel-2A
time series
feature extraction
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于时序光谱重构的卷积神经网络遥感农作物分类
冯齐心
杨辽
王伟胜
陈桃
黄双燕
《中国科学院大学学报(中英文)》
CSCD
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部