针对传统粒子滤波跟踪算法重采样时存在粒子退化、目标与背景颜色相似和尺度变化导致的目标定位不准确问题,本研究提出了一种基于特征融合的粒子群优化粒子滤波跟踪算法,算法利用粒子群优化进行粒子权值更新,用当前状态估计值与各粒子...针对传统粒子滤波跟踪算法重采样时存在粒子退化、目标与背景颜色相似和尺度变化导致的目标定位不准确问题,本研究提出了一种基于特征融合的粒子群优化粒子滤波跟踪算法,算法利用粒子群优化进行粒子权值更新,用当前状态估计值与各粒子状态的差值大小作为评价标准,促使粒子采样向真实状态区域移动,减缓粒子退化,提高了粒子滤波跟踪算法的跟踪性能。针对跟踪目标尺度变化导致的定位不准确情况,引入了归一化转动惯量(Normalized moment of inertia,NMI)特征,并将它与颜色特征采用乘性融合策略进行融合来描述目标特征,提高目标复杂场景下的定位精度。通过在多个标准测试视频上进行试验,实验结果表明,本研究提出的方法对动态背景场景中尺度变化目标和背景颜色相似目标的跟踪具有较好的准确性和鲁棒性。展开更多
文摘针对传统粒子滤波跟踪算法重采样时存在粒子退化、目标与背景颜色相似和尺度变化导致的目标定位不准确问题,本研究提出了一种基于特征融合的粒子群优化粒子滤波跟踪算法,算法利用粒子群优化进行粒子权值更新,用当前状态估计值与各粒子状态的差值大小作为评价标准,促使粒子采样向真实状态区域移动,减缓粒子退化,提高了粒子滤波跟踪算法的跟踪性能。针对跟踪目标尺度变化导致的定位不准确情况,引入了归一化转动惯量(Normalized moment of inertia,NMI)特征,并将它与颜色特征采用乘性融合策略进行融合来描述目标特征,提高目标复杂场景下的定位精度。通过在多个标准测试视频上进行试验,实验结果表明,本研究提出的方法对动态背景场景中尺度变化目标和背景颜色相似目标的跟踪具有较好的准确性和鲁棒性。