期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MK的实数公理系统相容性和范畴性的Coq形式化
1
作者
郭达凯
冷姝锟
+2 位作者
窦国威
陈思
郁文生
《控制理论与应用》
EI
CAS
CSCD
北大核心
2024年第7期1274-1285,共12页
数学定理机器证明是人工智能基础理论的深刻体现.实数理论是数学分析的基础,实数公理系统是建立实数理论的重要方法.Morse-Kelley公理化集合论(MK)作为现代数学的基础,也为实数构建提供了严谨的数学框架和工具.本文使用定理证明器Coq,基...
数学定理机器证明是人工智能基础理论的深刻体现.实数理论是数学分析的基础,实数公理系统是建立实数理论的重要方法.Morse-Kelley公理化集合论(MK)作为现代数学的基础,也为实数构建提供了严谨的数学框架和工具.本文使用定理证明器Coq,基于MK对实数公理系统进行了深入探索.在优化了MK形式化代码的基础上,形式化构建了完整的实数公理系统,并通过形式化Landau《分析基础》中的实数模型,证明其相对于MK相容,此外,还形式化证明了实数公理系统所有模型在同构意义下是唯一的,验证了实数公理系统的范畴性.本文全部定理无例外地给出Coq的机器证明代码,所有形式化过程已被Coq验证,并在计算机上运行通过,充分体现了基于Coq的数学定理机器证明具有可读性、交互性和智能性的特点,其证明过程规范、严谨、可靠.该系统可方便地应用于拓扑学和代数学理论的形式化构建.谨以此文庆祝我国著名控制系统专家秦化淑研究员九十华诞!
展开更多
关键词
Morse-Kelley公理化集合论
实数公理系统
相容性
范畴性
COQ
形式化
机器证明
人工智能
下载PDF
职称材料
题名
基于MK的实数公理系统相容性和范畴性的Coq形式化
1
作者
郭达凯
冷姝锟
窦国威
陈思
郁文生
机构
北京邮电大学电子工程学院天地互联与融合北京市重点实验室
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2024年第7期1274-1285,共12页
基金
国家自然科学基金项目(61936008)资助。
文摘
数学定理机器证明是人工智能基础理论的深刻体现.实数理论是数学分析的基础,实数公理系统是建立实数理论的重要方法.Morse-Kelley公理化集合论(MK)作为现代数学的基础,也为实数构建提供了严谨的数学框架和工具.本文使用定理证明器Coq,基于MK对实数公理系统进行了深入探索.在优化了MK形式化代码的基础上,形式化构建了完整的实数公理系统,并通过形式化Landau《分析基础》中的实数模型,证明其相对于MK相容,此外,还形式化证明了实数公理系统所有模型在同构意义下是唯一的,验证了实数公理系统的范畴性.本文全部定理无例外地给出Coq的机器证明代码,所有形式化过程已被Coq验证,并在计算机上运行通过,充分体现了基于Coq的数学定理机器证明具有可读性、交互性和智能性的特点,其证明过程规范、严谨、可靠.该系统可方便地应用于拓扑学和代数学理论的形式化构建.谨以此文庆祝我国著名控制系统专家秦化淑研究员九十华诞!
关键词
Morse-Kelley公理化集合论
实数公理系统
相容性
范畴性
COQ
形式化
机器证明
人工智能
Keywords
Morse-Kelley set theory
real number axiomatic system
consistency
categoricity
Coq
formalization
machine-assisted theorem proving
artificial intelligence
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MK的实数公理系统相容性和范畴性的Coq形式化
郭达凯
冷姝锟
窦国威
陈思
郁文生
《控制理论与应用》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部