新型多层厚型气体电子倍增器(Multi-layers THick Gas Electron Multiplier,M-THGEM)和传统THGEM(厚型气体电子倍增器)相比,具有连续的雪崩区,能够在低气压和低电压下都有较高增益,结构更紧凑,易于大面积制作等优势。对M-THGEM探测器的...新型多层厚型气体电子倍增器(Multi-layers THick Gas Electron Multiplier,M-THGEM)和传统THGEM(厚型气体电子倍增器)相比,具有连续的雪崩区,能够在低气压和低电压下都有较高增益,结构更紧凑,易于大面积制作等优势。对M-THGEM探测器的工作原理及性能进行了模拟研究,首先通过有限元(ANSYS)软件对二层与三层结构的M-THGEM进行了建模,对电场和电势分布分别进行了模拟计算;再利用Garfield++程序包对M-THGEM探测器在不同低气压和不同工作电压下的增益、感生信号、正离子反馈率等性能进行了研究。模拟结果表明,三层结构M-THGEM在低气压(200 Torr)、纯He气体条件下,能够获得较稳定的增益(10~5),输出信号的宽度在12 ns左右;同时,为降低正离子反馈率,本工作提出并研究了一种非对称的电压施加方式,结果表明,这种施加方式能有效降低正离子的反馈率。展开更多
文摘新型多层厚型气体电子倍增器(Multi-layers THick Gas Electron Multiplier,M-THGEM)和传统THGEM(厚型气体电子倍增器)相比,具有连续的雪崩区,能够在低气压和低电压下都有较高增益,结构更紧凑,易于大面积制作等优势。对M-THGEM探测器的工作原理及性能进行了模拟研究,首先通过有限元(ANSYS)软件对二层与三层结构的M-THGEM进行了建模,对电场和电势分布分别进行了模拟计算;再利用Garfield++程序包对M-THGEM探测器在不同低气压和不同工作电压下的增益、感生信号、正离子反馈率等性能进行了研究。模拟结果表明,三层结构M-THGEM在低气压(200 Torr)、纯He气体条件下,能够获得较稳定的增益(10~5),输出信号的宽度在12 ns左右;同时,为降低正离子反馈率,本工作提出并研究了一种非对称的电压施加方式,结果表明,这种施加方式能有效降低正离子的反馈率。