期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Metropolis准则的Q-学习算法研究 被引量:14
1
作者 郭茂祖 王亚东 +1 位作者 刘 扬 孙华梅 《计算机研究与发展》 EI CSCD 北大核心 2002年第6期684-688,共5页
探索与扩张是Q-学习算法中动作选取的关键问题,一味地扩张将使智能体很快地陷入局部最优,虽然探索可以跳出局部最优并加速学习,而过多的探索将影响算法的性能.通过把Q-学习中寻求最优策略表示为组合优化问题中最优解的搜索,将模拟退火... 探索与扩张是Q-学习算法中动作选取的关键问题,一味地扩张将使智能体很快地陷入局部最优,虽然探索可以跳出局部最优并加速学习,而过多的探索将影响算法的性能.通过把Q-学习中寻求最优策略表示为组合优化问题中最优解的搜索,将模拟退火算法的Metropolis准则用于Q-学习中探索和扩张之间的折衷处理,提出基于Metropolis准则的Q-学习算法SA-Q-learning.通过实验比较,它具有更快的收敛速度,而且避免了过多探索引起的算法性能下降. 展开更多
关键词 机器学习 METROPOLIS准则 Q-学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部