传统的弱信号恢复方法在强噪声背景下具有较大的局限性,有用的信息往往淹没在强噪声背景下不易被识别。针对这个难点,提出一种基于三维曲波变换的弱信号恢复的方法。该方法将三维曲波变换和自适应滤波器相融合,从而提高数据中弱信号的能...传统的弱信号恢复方法在强噪声背景下具有较大的局限性,有用的信息往往淹没在强噪声背景下不易被识别。针对这个难点,提出一种基于三维曲波变换的弱信号恢复的方法。该方法将三维曲波变换和自适应滤波器相融合,从而提高数据中弱信号的能量,使得弱信号更易于被恢复。为了验证该方法的有效性,对楔形模型与实际三维数据进行处理。实验结果表明,恢复后的数据信噪比提高了2 d B到3 d B,频带也被拓宽了150 Hz,弱信号得到较好的恢复。展开更多
文摘传统的弱信号恢复方法在强噪声背景下具有较大的局限性,有用的信息往往淹没在强噪声背景下不易被识别。针对这个难点,提出一种基于三维曲波变换的弱信号恢复的方法。该方法将三维曲波变换和自适应滤波器相融合,从而提高数据中弱信号的能量,使得弱信号更易于被恢复。为了验证该方法的有效性,对楔形模型与实际三维数据进行处理。实验结果表明,恢复后的数据信噪比提高了2 d B到3 d B,频带也被拓宽了150 Hz,弱信号得到较好的恢复。