The antitumor mechanism of etoposide (VP-16) is investigated using pulse radiolysis technology. The oxidizing mechanism of VP-16 is studied by sodium persulfate, and the reaction rate constant is 4.04× 109 L·...The antitumor mechanism of etoposide (VP-16) is investigated using pulse radiolysis technology. The oxidizing mechanism of VP-16 is studied by sodium persulfate, and the reaction rate constant is 4.04× 109 L· mol-1 · s-1. The electron-transfer between VP-16 and tyrosine is observed and the reaction rate constant is 1.1 - 108 L · mol-1· s-1.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 39700029).
文摘The antitumor mechanism of etoposide (VP-16) is investigated using pulse radiolysis technology. The oxidizing mechanism of VP-16 is studied by sodium persulfate, and the reaction rate constant is 4.04× 109 L· mol-1 · s-1. The electron-transfer between VP-16 and tyrosine is observed and the reaction rate constant is 1.1 - 108 L · mol-1· s-1.