目的比较轻比重蛛网膜下腔阻滞与坐骨神经阻滞在老年下肢手术患者中的应用效果,为临床治疗提供参考。方法选取2022年10月至2023年10月新疆医科大学第五附属医院收治的75例老年下肢手术患者为研究对象,按照随机数字表法分为对照组(36例)...目的比较轻比重蛛网膜下腔阻滞与坐骨神经阻滞在老年下肢手术患者中的应用效果,为临床治疗提供参考。方法选取2022年10月至2023年10月新疆医科大学第五附属医院收治的75例老年下肢手术患者为研究对象,按照随机数字表法分为对照组(36例)和观察组(39例)。对照组患者采用轻比重蛛网膜下腔阻滞,观察组采用坐骨神经阻滞。比较两组患者麻醉效果、疼痛程度、凝血功能指标及不良反应发生情况。结果两组患者麻醉效果比较,差异无统计学意义(P>0.05);观察组患者麻醉有效率高于对照组(P<0.05)。两组患者视觉模拟量表(VAS)疼痛评分具有时间、组间差异,无交互效应差异(F_(时间)=45.699,P_(时间)<0.001;F_(组间)=15.885,P_(组间)<0.001;F交互=0.143,P_(交互)=0.867);两组患者术后24 h VAS疼痛评分均低于术后2、12 h,术后12 h VAS疼痛评分均低于术后2 h,且观察组术后2、12、24 h均低于舒芬太尼组。两组患者凝血酶时间(TT)、凝血酶原时间(PT)具有时间、组间差异,无交互效应差异[TT:F_(时间)=55.987,P_(时间)<0.001;F_(组间)=4.056,P_(组间)=0.048;F_(交互)=0.889,P_(交互)=0.413。PT:F_(时间)=30.406,P_(时间)<0.001;F_(组间)=6.353,P_(组间)=0.014;F_(交互)=1.449,P_(交互)=0.238);两组患者喉罩拔除时TT、PT均长于术1 h、术前,术1 h TT、PT均长于术前,且观察组术1 h、喉罩拔除时均长于对照组。观察组患者不良反应总发生率低于对照组(P<0.05)。结论与轻比重蛛网膜下腔阻滞相比,老年下肢手术患者麻醉时采用坐骨神经阻滞麻醉效果较好,术后疼痛程度较轻,可改善凝血功能,且安全性较高,值得临床应用。展开更多
The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σ...The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.展开更多
文摘目的比较轻比重蛛网膜下腔阻滞与坐骨神经阻滞在老年下肢手术患者中的应用效果,为临床治疗提供参考。方法选取2022年10月至2023年10月新疆医科大学第五附属医院收治的75例老年下肢手术患者为研究对象,按照随机数字表法分为对照组(36例)和观察组(39例)。对照组患者采用轻比重蛛网膜下腔阻滞,观察组采用坐骨神经阻滞。比较两组患者麻醉效果、疼痛程度、凝血功能指标及不良反应发生情况。结果两组患者麻醉效果比较,差异无统计学意义(P>0.05);观察组患者麻醉有效率高于对照组(P<0.05)。两组患者视觉模拟量表(VAS)疼痛评分具有时间、组间差异,无交互效应差异(F_(时间)=45.699,P_(时间)<0.001;F_(组间)=15.885,P_(组间)<0.001;F交互=0.143,P_(交互)=0.867);两组患者术后24 h VAS疼痛评分均低于术后2、12 h,术后12 h VAS疼痛评分均低于术后2 h,且观察组术后2、12、24 h均低于舒芬太尼组。两组患者凝血酶时间(TT)、凝血酶原时间(PT)具有时间、组间差异,无交互效应差异[TT:F_(时间)=55.987,P_(时间)<0.001;F_(组间)=4.056,P_(组间)=0.048;F_(交互)=0.889,P_(交互)=0.413。PT:F_(时间)=30.406,P_(时间)<0.001;F_(组间)=6.353,P_(组间)=0.014;F_(交互)=1.449,P_(交互)=0.238);两组患者喉罩拔除时TT、PT均长于术1 h、术前,术1 h TT、PT均长于术前,且观察组术1 h、喉罩拔除时均长于对照组。观察组患者不良反应总发生率低于对照组(P<0.05)。结论与轻比重蛛网膜下腔阻滞相比,老年下肢手术患者麻醉时采用坐骨神经阻滞麻醉效果较好,术后疼痛程度较轻,可改善凝血功能,且安全性较高,值得临床应用。
基金Projects(51474252,51274253)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts095)supported by the Fundamental Research Funds for the Central Universities,China
文摘The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.