We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with...We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.展开更多
We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanorib...We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.展开更多
We study the Josephson effect between two noncentrosymmetric superconductors(NCSs) with opposite polarization vectors of Rashba spin–orbit coupling(RSOC).We find a 0–π transition driven by the triplet–singlet ...We study the Josephson effect between two noncentrosymmetric superconductors(NCSs) with opposite polarization vectors of Rashba spin–orbit coupling(RSOC).We find a 0–π transition driven by the triplet–singlet ratio of NCSs.Different from conventional 0–π transitions,the Andreev bound states change their energy range instead of phase shift in the 0–π transition found here.This novel property results in a feature that the critical current becomes almost zero at the transition point,not only a minimum.Furthermore,when the directions of RSOC polarization vectors are the same in two NCSs,the similar effect can also be found in the presence of a perpendicular exchange field or a Dresselhause spin–orbit coupling in the interlayer.We find novel oscillations of critical current without 0–π transition.These novel 0–π transitions or oscillations of critical current present new understanding of the Josephson effect and can also serve as a tool to determine the unknown triplet–singlet ratio of NCSs.展开更多
We present a qualitative and quantitative study of the magneto-thermoelectric effect of graphene. In the limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering dom...We present a qualitative and quantitative study of the magneto-thermoelectric effect of graphene. In the limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering dominates the charge and thermal transport. The self-energy and the Green's functions are calculated in the self-consistent Born approximation. It is found that the longitudinal thermal conductivity splits into double peaks at high Landau levels and exhibits oscillations which are out of phase with the electric conductivity. The chemical potential-dependent electrical resistivity, the thermal conductivities, the Seebeck coefficient, and the Nernst coefficient are obtained. The results are in good agreement with the experimental observations.展开更多
We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps formi...We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.展开更多
基金the National Natural Sci-ence Foundation of China(Grant No.61988102)the Key Research and Development Program of Guangdong Province(Grant No.2019B090917007)+5 种基金the Science and Technology Planning Project of Guangdong Province(Grant No.2019B090909011)Q.L.acknowledges Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0018)Z.L.acknowledges the support of fund-ing from Chinese Academy of Sciences E1Z1D10200 and E2Z2D10200from ZJ project 2021QN02X159 and from JSPS(Grant Nos.PE14052 and P16027)We gratefully ac-knowledge HZWTECH for providing computation facilities.Z.-X.H.was supported by the National Natural Science Foun-dation of China(Grant Nos.11974064 and 12147102)the Fundamental Research Funds for the Central Universities(Grant No.2020CDJQY-Z003).
文摘We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051)the Science Foundation of GuangDong Province (Grant No.2021A1515012363)GuangDong Basic and Applied Basic Research Foundation (Grant No.2022A1515110011)。
文摘We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204187 and 11274059)
文摘We study the Josephson effect between two noncentrosymmetric superconductors(NCSs) with opposite polarization vectors of Rashba spin–orbit coupling(RSOC).We find a 0–π transition driven by the triplet–singlet ratio of NCSs.Different from conventional 0–π transitions,the Andreev bound states change their energy range instead of phase shift in the 0–π transition found here.This novel property results in a feature that the critical current becomes almost zero at the transition point,not only a minimum.Furthermore,when the directions of RSOC polarization vectors are the same in two NCSs,the similar effect can also be found in the presence of a perpendicular exchange field or a Dresselhause spin–orbit coupling in the interlayer.We find novel oscillations of critical current without 0–π transition.These novel 0–π transitions or oscillations of critical current present new understanding of the Josephson effect and can also serve as a tool to determine the unknown triplet–singlet ratio of NCSs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274013 and 11774006)the National Basic Research Program of China(2012CB921300)the Australian Research Council Grant(Grant No.DP160101474)
文摘We present a qualitative and quantitative study of the magneto-thermoelectric effect of graphene. In the limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering dominates the charge and thermal transport. The self-energy and the Green's functions are calculated in the self-consistent Born approximation. It is found that the longitudinal thermal conductivity splits into double peaks at high Landau levels and exhibits oscillations which are out of phase with the electric conductivity. The chemical potential-dependent electrical resistivity, the thermal conductivities, the Seebeck coefficient, and the Nernst coefficient are obtained. The results are in good agreement with the experimental observations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.115074045 and 11204187)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131284)
文摘We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.