Conventional TIG welding is known as its low productivity and limited weld depth in a single pass. Activating TIG welding (A TIG) can greatly improve the penetration when compared with the conventional TIG welding. Th...Conventional TIG welding is known as its low productivity and limited weld depth in a single pass. Activating TIG welding (A TIG) can greatly improve the penetration when compared with the conventional TIG welding. The effects of five kinds of activating fluxes with single component (NaF, CaF 2, AlF 3, NaCl or CaCl 2) on penetration, microstructure and weld mechanical properties during the TIG welding of titanium alloy Ti 6Al 4V were studied. Compared with the conventional TIG welding, the experimental results show that the fluxes can greatly improve the penetration at the same welding specifications. This is because of the constriction of anode spots and the change of surface tension grads. Among them the effect of flux NaF is the best in the weld tensile strength, and the effect of flux CaF 2 on the weld bend intension is the best. The appearance of inferior crystal grains and the structure of trident crystal grains are the main reasons that the performance of weld with fluoride is improved. These experimental results can be used as an aid for selecting suitable activating flux for titanium alloy.展开更多
Activating TIG (A-TIG) welding has received many attentions worldwide since the end of 1990s. Compared with conventional TIG welding A-TIG welding can greatly improve the welding productivity and reduce the welding co...Activating TIG (A-TIG) welding has received many attentions worldwide since the end of 1990s. Compared with conventional TIG welding A-TIG welding can greatly improve the welding productivity and reduce the welding cost without altering the equipments under the same welding procedures and is considered as a innovative variant of conventional TIG welding. The materials applied by A-TIG welding have ranged from original titanium alloy to stainless steel, carbon steel, high temperature alloy steel and so forth. The effects of activating fluxes with single component on weld mechanical properties such as tensile strength, hardness and elastics during A-TIG welding of stainless steel are discussed in this paper. The experimental results show that different fluxes have different effects on the weld mechanical properties. Among these fluxes the flux SiO_2 is the best in the performance of tensile strength and ductility, while flux Cr_2O_3 is the best in the performance of weld hardness compared with conventional TIG welding. These experiments provide the foundation for selecting the most suitable fluxes for stainless steel in practical welding production.展开更多
文摘Conventional TIG welding is known as its low productivity and limited weld depth in a single pass. Activating TIG welding (A TIG) can greatly improve the penetration when compared with the conventional TIG welding. The effects of five kinds of activating fluxes with single component (NaF, CaF 2, AlF 3, NaCl or CaCl 2) on penetration, microstructure and weld mechanical properties during the TIG welding of titanium alloy Ti 6Al 4V were studied. Compared with the conventional TIG welding, the experimental results show that the fluxes can greatly improve the penetration at the same welding specifications. This is because of the constriction of anode spots and the change of surface tension grads. Among them the effect of flux NaF is the best in the weld tensile strength, and the effect of flux CaF 2 on the weld bend intension is the best. The appearance of inferior crystal grains and the structure of trident crystal grains are the main reasons that the performance of weld with fluoride is improved. These experimental results can be used as an aid for selecting suitable activating flux for titanium alloy.
文摘Activating TIG (A-TIG) welding has received many attentions worldwide since the end of 1990s. Compared with conventional TIG welding A-TIG welding can greatly improve the welding productivity and reduce the welding cost without altering the equipments under the same welding procedures and is considered as a innovative variant of conventional TIG welding. The materials applied by A-TIG welding have ranged from original titanium alloy to stainless steel, carbon steel, high temperature alloy steel and so forth. The effects of activating fluxes with single component on weld mechanical properties such as tensile strength, hardness and elastics during A-TIG welding of stainless steel are discussed in this paper. The experimental results show that different fluxes have different effects on the weld mechanical properties. Among these fluxes the flux SiO_2 is the best in the performance of tensile strength and ductility, while flux Cr_2O_3 is the best in the performance of weld hardness compared with conventional TIG welding. These experiments provide the foundation for selecting the most suitable fluxes for stainless steel in practical welding production.