期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于动态贝叶斯网络的可修GO法模型算法 被引量:13
1
作者 樊冬明 任羿 +3 位作者 刘林林 刘叔正 樊剑 王自力 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第11期2166-2176,共11页
GO法是评价复杂系统可靠性和安全性的有效方法,除了能描述多状态时序特性外,还能表达系统的复杂动态维修行为.针对这种带有动态可修特性的系统GO法模型,提出一种基于动态贝叶斯网络的新算法.首先将GO法模型中的可修操作符和不可修操作... GO法是评价复杂系统可靠性和安全性的有效方法,除了能描述多状态时序特性外,还能表达系统的复杂动态维修行为.针对这种带有动态可修特性的系统GO法模型,提出一种基于动态贝叶斯网络的新算法.首先将GO法模型中的可修操作符和不可修操作符转换成动态贝叶斯网络,然后将整体模型通过贝叶斯软件进行模型求解.新方法结合贝叶斯网络理论的成熟算法和软件,可得到系统可用度随时间变化的曲线和给定时间点的瞬时可靠性指标,并且无需考虑共有信号问题.基于动态贝叶斯网络理论的新算法规则简单统一,便于工程应用. 展开更多
关键词 GO法 动态贝叶斯网络 可修复性模型 可靠性建模 模型算法
下载PDF
Combining KNN with AutoEncoder for Outlier Detection
2
作者 Shu-Zheng Liu Shuai Ma +2 位作者 Han-Qing Chen Li-Zhen Cui Jie Ding 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第5期1153-1166,共14页
K-nearest neighbor(KNN)is one of the most fundamental methods for unsupervised outlier detection because of its various advantages,e.g.,ease of use and relatively high accuracy.Currently,most data analytic tasks need ... K-nearest neighbor(KNN)is one of the most fundamental methods for unsupervised outlier detection because of its various advantages,e.g.,ease of use and relatively high accuracy.Currently,most data analytic tasks need to deal with high-dimensional data,and the KNN-based methods often fail due to“the curse of dimensionality”.AutoEncoder-based methods have recently been introduced to use reconstruction errors for outlier detection on high-dimensional data,but the direct use of AutoEncoder typically does not preserve the data proximity relationships well for outlier detection.In this study,we propose to combine KNN with AutoEncoder for outlier detection.First,we propose the Nearest Neighbor AutoEncoder(NNAE)by persevering the original data proximity in a much lower dimension that is more suitable for performing KNN.Second,we propose the K-nearest reconstruction neighbors(K NRNs)by incorporating the reconstruction errors of NNAE with the K-distances of KNN to detect outliers.Third,we develop a method to automatically choose better parameters for optimizing the structure of NNAE.Finally,using five real-world datasets,we experimentally show that our proposed approach NNAE+K NRN is much better than existing methods,i.e.,KNN,Isolation Forest,a traditional AutoEncoder using reconstruction errors(AutoEncoder-RE),and Robust AutoEncoder. 展开更多
关键词 outlier detection AutoEncoder K-nearest neighbor(KNN) unsupervised learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部