压缩感知理论被广泛应用于从少量随机观测中精确地重构原始信号,基于压缩感知理论来实现图像的超分辨率重建,在利用图像的局部稀疏性先验的基础上,采取了以下两项措施:一是通过对图像降质模型的估计,采用K-奇异值分解(Ksingular value d...压缩感知理论被广泛应用于从少量随机观测中精确地重构原始信号,基于压缩感知理论来实现图像的超分辨率重建,在利用图像的局部稀疏性先验的基础上,采取了以下两项措施:一是通过对图像降质模型的估计,采用K-奇异值分解(Ksingular value decomposition,K-SVD)算法构建过完备字典对,依据同一图像高低分辨率观测在对应字典下稀疏表示系数相似的特点,将字典对所表示的高低分辨率图像间的映射关系带入目标函数中,避免了降采样和模糊算子难以抽象为矩阵形式对求解造成的影响;二是在待超分辨率图像稀疏编码时提出一种自适应加权的梯度投影稀疏重构(adaptive weighting gradient projection for sparse reconstruction,AWGPSR)算法,克服了传统正交匹配追踪(orthogonal matching pursuit,OMP)算法在这一步需要固定稀疏度的缺陷,可获得更加精确的稀疏表示系数。结合得到的稀疏表示系数与高分辨率字典可以重建出图像的高频分量,将重建的高频分量与低频部分融合可以得到最终的图像超分辨率重建结果。实验结果表明,所提算法无论从主观视觉还是客观评价指标上均优于其他相关方法。展开更多