期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于强化学习和Transformer的输电线路缺陷智能检测方法研究 被引量:5
1
作者 李帷韬 侯建平 +2 位作者 张倩 徐晓冰 刘嘉薪 《高电压技术》 EI CAS CSCD 北大核心 2023年第8期3373-3384,共12页
为了解决传统输电线路缺陷检测方法的不足,该文提出了一种基于强化学习和Transformer的输电线路缺陷智能识别方法。首先,采用具有较大感受野的空洞卷积网络(deterministic networking, DetNet)对输电线路巡检缺陷图像进行特征提取,继而... 为了解决传统输电线路缺陷检测方法的不足,该文提出了一种基于强化学习和Transformer的输电线路缺陷智能识别方法。首先,采用具有较大感受野的空洞卷积网络(deterministic networking, DetNet)对输电线路巡检缺陷图像进行特征提取,继而使用深度Q网络(deepQ-network,DQN)筛选出包含前景信息的重要区域。其次,基于双线性注意力机制对背景区域特征向量进行投影压缩,使得融合特征向量聚焦于目标区域。最后,针对不确定缺陷检测结果定义可信度评测指标,构建Transformer网络编码层级的自适应调整机制,建立具有不同编码层级的Transformer模型库,以获取多模态缺陷的多层次差异化特征,采用Soft-NMS获取集成检测结果,提升识别模型的鲁棒性。通过对输电线路缺陷航拍图像进行了实验研究,该文方法检测精度平均值为89.7%,与其他算法相比具有更优的检测精度和泛化能力。 展开更多
关键词 电力缺陷识别 强化学习 TRANSFORMER 可信度评测 智能认知
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部