期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于强化学习和Transformer的输电线路缺陷智能检测方法研究
被引量:
5
1
作者
李帷韬
侯建平
+2 位作者
张倩
徐晓冰
刘嘉薪
《高电压技术》
EI
CAS
CSCD
北大核心
2023年第8期3373-3384,共12页
为了解决传统输电线路缺陷检测方法的不足,该文提出了一种基于强化学习和Transformer的输电线路缺陷智能识别方法。首先,采用具有较大感受野的空洞卷积网络(deterministic networking, DetNet)对输电线路巡检缺陷图像进行特征提取,继而...
为了解决传统输电线路缺陷检测方法的不足,该文提出了一种基于强化学习和Transformer的输电线路缺陷智能识别方法。首先,采用具有较大感受野的空洞卷积网络(deterministic networking, DetNet)对输电线路巡检缺陷图像进行特征提取,继而使用深度Q网络(deepQ-network,DQN)筛选出包含前景信息的重要区域。其次,基于双线性注意力机制对背景区域特征向量进行投影压缩,使得融合特征向量聚焦于目标区域。最后,针对不确定缺陷检测结果定义可信度评测指标,构建Transformer网络编码层级的自适应调整机制,建立具有不同编码层级的Transformer模型库,以获取多模态缺陷的多层次差异化特征,采用Soft-NMS获取集成检测结果,提升识别模型的鲁棒性。通过对输电线路缺陷航拍图像进行了实验研究,该文方法检测精度平均值为89.7%,与其他算法相比具有更优的检测精度和泛化能力。
展开更多
关键词
电力缺陷识别
强化学习
TRANSFORMER
可信度评测
智能认知
下载PDF
职称材料
题名
基于强化学习和Transformer的输电线路缺陷智能检测方法研究
被引量:
5
1
作者
李帷韬
侯建平
张倩
徐晓冰
刘嘉薪
机构
合肥工业大学电气与自动化工程学院
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2023年第8期3373-3384,共12页
基金
国家自然科学基金(62173120)
安徽省自然科学基金能源互联网联合基金(2108085UD11)
111引智项目(BP0719039)。
文摘
为了解决传统输电线路缺陷检测方法的不足,该文提出了一种基于强化学习和Transformer的输电线路缺陷智能识别方法。首先,采用具有较大感受野的空洞卷积网络(deterministic networking, DetNet)对输电线路巡检缺陷图像进行特征提取,继而使用深度Q网络(deepQ-network,DQN)筛选出包含前景信息的重要区域。其次,基于双线性注意力机制对背景区域特征向量进行投影压缩,使得融合特征向量聚焦于目标区域。最后,针对不确定缺陷检测结果定义可信度评测指标,构建Transformer网络编码层级的自适应调整机制,建立具有不同编码层级的Transformer模型库,以获取多模态缺陷的多层次差异化特征,采用Soft-NMS获取集成检测结果,提升识别模型的鲁棒性。通过对输电线路缺陷航拍图像进行了实验研究,该文方法检测精度平均值为89.7%,与其他算法相比具有更优的检测精度和泛化能力。
关键词
电力缺陷识别
强化学习
TRANSFORMER
可信度评测
智能认知
Keywords
electric power defect recognition
reinforcement learning
Transformer
reliability evaluation
intelligent cognition
分类号
TM75 [电气工程—电力系统及自动化]
TP18 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于强化学习和Transformer的输电线路缺陷智能检测方法研究
李帷韬
侯建平
张倩
徐晓冰
刘嘉薪
《高电压技术》
EI
CAS
CSCD
北大核心
2023
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部