Doping luminescent lanthanide ions into semiconductor nanocrystals is an ideal approach for developing nanodevices for various applications. Quantum confinement effects are expected for lanthanide ions doped in small ...Doping luminescent lanthanide ions into semiconductor nanocrystals is an ideal approach for developing nanodevices for various applications. Quantum confinement effects are expected for lanthanide ions doped in small semiconductor nanocrystals. The most recent progress on the synthesis and spectroscopy of lanthanide ions in various semiconductor nanocrystals such as Ⅱ -Ⅵ, Ⅲ-Ⅴ and Ⅳ-Ⅵ families were systematically reviewed, focusing on our recent findings on the optical spectroscopy of Eu^3 + doped in ZnO and TiO2 nanocrystals by wet chemical synthesis. The energy transfer from the band-gap excitation to lanthanides further confirmed that lanthanide ions could be successfully incorporated into the lattice sites in spite of the mismatch in ionic radii.展开更多
基金Project supported by the One Hundred Talents Program from the Chinese Academy of Sciences, the NSFC (10504032)the Startup Foundation from the State Ministry of Personnel of China, the 973 Program (2007CB936703)+1 种基金the Science Foundation of Fujian Province (2006F3137 and 2007I0024)Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under contract DE-AC02-06CH11357
文摘Doping luminescent lanthanide ions into semiconductor nanocrystals is an ideal approach for developing nanodevices for various applications. Quantum confinement effects are expected for lanthanide ions doped in small semiconductor nanocrystals. The most recent progress on the synthesis and spectroscopy of lanthanide ions in various semiconductor nanocrystals such as Ⅱ -Ⅵ, Ⅲ-Ⅴ and Ⅳ-Ⅵ families were systematically reviewed, focusing on our recent findings on the optical spectroscopy of Eu^3 + doped in ZnO and TiO2 nanocrystals by wet chemical synthesis. The energy transfer from the band-gap excitation to lanthanides further confirmed that lanthanide ions could be successfully incorporated into the lattice sites in spite of the mismatch in ionic radii.