水下目标物的准确识别是保障通航安全的一项重要工作,针对现有算法对水下多类别目标存在识别精度不高的问题,本文在YOLOv5s(You Only Look Once v5s)的基础上提出对其进行改进。首先,为平衡样本间的数量,通过利用几何变化操作模拟现实...水下目标物的准确识别是保障通航安全的一项重要工作,针对现有算法对水下多类别目标存在识别精度不高的问题,本文在YOLOv5s(You Only Look Once v5s)的基础上提出对其进行改进。首先,为平衡样本间的数量,通过利用几何变化操作模拟现实发生的情况对数量较少的样本进行扩充;其次,将YOLOv5s中传统损失函数CIoU惩罚项中的反正切函数改为Sigmoid函数,加快目标识别模型的收敛速度;最后,融合坐标注意力机制(Coordinate Attention,CA),融合后的模型能衡量每个通道信息的重要性,在关注目标位置信息的同时也不增加过多的计算量。试验结果表明:本文所提出的改进的YOLOv5s较改进前在准确率上提升了4.97%,在召回率上提高了6.20%,在类平均精度上提升了4.98%,证明本文改进的方法在工程应用上的价值。展开更多
文摘水下目标物的准确识别是保障通航安全的一项重要工作,针对现有算法对水下多类别目标存在识别精度不高的问题,本文在YOLOv5s(You Only Look Once v5s)的基础上提出对其进行改进。首先,为平衡样本间的数量,通过利用几何变化操作模拟现实发生的情况对数量较少的样本进行扩充;其次,将YOLOv5s中传统损失函数CIoU惩罚项中的反正切函数改为Sigmoid函数,加快目标识别模型的收敛速度;最后,融合坐标注意力机制(Coordinate Attention,CA),融合后的模型能衡量每个通道信息的重要性,在关注目标位置信息的同时也不增加过多的计算量。试验结果表明:本文所提出的改进的YOLOv5s较改进前在准确率上提升了4.97%,在召回率上提高了6.20%,在类平均精度上提升了4.98%,证明本文改进的方法在工程应用上的价值。