-
题名基于ROS和深度学习的杏鲍菇智能分选系统设计
- 1
-
-
作者
孙松丽
温宏愿
刘宾龄
钟锦扬
毛政兴
-
机构
南京理工大学泰州科技学院智能制造学院
-
出处
《中国农机化学报》
北大核心
2023年第8期95-102,共8页
-
基金
泰州市科技支撑计划(农业)项目(TN202011)
江苏省“青蓝工程”人才项目(苏教师函[2020]10号)。
-
文摘
为解决杏鲍菇人工分选耗时低效、准确率低的问题,提出一种基于深度学习的分级检测与抓取检测双模型并联的杏鲍菇智能分选方法和机器人智能分选系统。通过深度相机采集杏鲍菇图像,采用机器人作为分选执行器,基于ROS(Robot Operating System)应用python和C++语言设计开发智能分选控制软件,基于PyQt设计开发监控管理系统。测试结果表明:本分选系统可自动实现杏鲍菇的分级检测和机器人分选抓取,单只杏鲍菇分选检测用时18 ms,分级检测平均准确率为88.35%,机器人抓取成功率为98.33%,智能分选成功率为88.35%,证实系统整体的可行性与有效性,为其他农产品智能分选系统的整体实现提供新的解决思路。
-
关键词
杏鲍菇
智能分选
深度学习
机器人抓取
机器人操作系统
农产品加工
-
Keywords
Pleurotus eryngii
intelligent sorting
deep learning
robot grasping
ROS
-
分类号
S5
[农业科学—作物学]
TP274.5
[自动化与计算机技术—检测技术与自动化装置]
TP391.4
[自动化与计算机技术—计算机应用技术]
-