One-dimensional(1D)micro/nanowires of wide band gap semiconductors have become one of the most promising blocks of high-performance photodetectors.However,in the axial direction of micro/nanowires,the carriers can tra...One-dimensional(1D)micro/nanowires of wide band gap semiconductors have become one of the most promising blocks of high-performance photodetectors.However,in the axial direction of micro/nanowires,the carriers can transport freely driven by an external electric field,which usually produces large dark current and low detectivity.Here,an UV photodetector built from three cross-intersecting ZnO microwires with double homo-interfaces is demonstrated by the chemical vapor deposition and physical transfer techniques.Compared with the reference device without interface,the dark current of this ZnO double-interface photodetector is significantly reduced by nearly 5 orders of magnitude,while the responsivity decreases slightly,thereby greatly improving the normalized photocurrent-to-dark current ratio.In addition,ZnO double-interface photodetector exhibits a much faster response speed(~0.65 s)than the no-interface device(~95 s).The improved performance is attributed to the potential barriers at the microwire-microwire homo-interfaces,which can regulate the carrier transport.Our findings in this work provide a promising approach for the design and development of high-performance photodetectors.展开更多
The slower response speed is the main problem in the application of ZnO quantum dots(QDs)photodetector,which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorpti...The slower response speed is the main problem in the application of ZnO quantum dots(QDs)photodetector,which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes.However,the detailed mechanism is still not very clear.Herein,the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy(VO)defects controlled by hydrogen peroxide(H_(2)O_(2))solution treatment have been investigated.After H_(2)O_(2) solution treatment,VO concentration of ZnO QDs decreased.The H_(2)O_(2) solution-treated device has a higher photocurrent and a lower dark current.Meanwhile,with the increase in VO concentration of ZnO QDs,the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate.More interestingly,the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects.The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed,which is helpful for sensor designing.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074148,61875194,11727902,12074372,11774341,11974344,61975204,and 11804335)the National Ten Thousand Talent Program for Young Topnotch Talents,the Key Research and Development Program of Changchun City(Grant No.21ZY05)+2 种基金the 100 Talents Program of the Chinese Academy of Sciences,Youth Innovation Promotion Association,CAS(Grant No.2020225)Jilin Province Science Fund(Grant No.20210101145JC)XuGuang Talents Plan of CIOMP。
文摘One-dimensional(1D)micro/nanowires of wide band gap semiconductors have become one of the most promising blocks of high-performance photodetectors.However,in the axial direction of micro/nanowires,the carriers can transport freely driven by an external electric field,which usually produces large dark current and low detectivity.Here,an UV photodetector built from three cross-intersecting ZnO microwires with double homo-interfaces is demonstrated by the chemical vapor deposition and physical transfer techniques.Compared with the reference device without interface,the dark current of this ZnO double-interface photodetector is significantly reduced by nearly 5 orders of magnitude,while the responsivity decreases slightly,thereby greatly improving the normalized photocurrent-to-dark current ratio.In addition,ZnO double-interface photodetector exhibits a much faster response speed(~0.65 s)than the no-interface device(~95 s).The improved performance is attributed to the potential barriers at the microwire-microwire homo-interfaces,which can regulate the carrier transport.Our findings in this work provide a promising approach for the design and development of high-performance photodetectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074148,61875194,11727902,12074372,11774341,11974344,61975204,and 11804335)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2020225)the Open Project of the State Key Laboratory of Luminescence and Applications(Grant Nos.SKLA-2020-02 and SKLA-2020-06).
文摘The slower response speed is the main problem in the application of ZnO quantum dots(QDs)photodetector,which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes.However,the detailed mechanism is still not very clear.Herein,the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy(VO)defects controlled by hydrogen peroxide(H_(2)O_(2))solution treatment have been investigated.After H_(2)O_(2) solution treatment,VO concentration of ZnO QDs decreased.The H_(2)O_(2) solution-treated device has a higher photocurrent and a lower dark current.Meanwhile,with the increase in VO concentration of ZnO QDs,the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate.More interestingly,the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects.The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed,which is helpful for sensor designing.