图像分割时,传统分类方法直接在图像上操作,会出现的数据高维特性表现差,分类效果差等问题,提出将最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)应用于图像分割,并利用粒子群算法对其参数进行优化。通过对经典的...图像分割时,传统分类方法直接在图像上操作,会出现的数据高维特性表现差,分类效果差等问题,提出将最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)应用于图像分割,并利用粒子群算法对其参数进行优化。通过对经典的二分类与多分类问题的测试及彩色实物图像分割实验,结果表明,LS-SVM能综合使用图像多种特征,能够准确实现对图像感兴趣区域的分割,且分割速度比一般的支持向量机提高很多。展开更多
文摘图像分割时,传统分类方法直接在图像上操作,会出现的数据高维特性表现差,分类效果差等问题,提出将最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)应用于图像分割,并利用粒子群算法对其参数进行优化。通过对经典的二分类与多分类问题的测试及彩色实物图像分割实验,结果表明,LS-SVM能综合使用图像多种特征,能够准确实现对图像感兴趣区域的分割,且分割速度比一般的支持向量机提高很多。