lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synt...lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation.展开更多
Effects of La, N, and P doping on the structural, electronic and optical properties of TiO_2 synthesized from TiCl_4 hydrolysis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission...Effects of La, N, and P doping on the structural, electronic and optical properties of TiO_2 synthesized from TiCl_4 hydrolysis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission electron microscopy, N_2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-vis absorbance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy. The results showed that the presence of La in the tri-doped TiO_2 played a predominant role in inhibiting the recombination of the photogenerated electrons and holes. The existence of the substitutional N, interstitial N, and oxygen vacancies in TiO_2 lattices led to the band gap narrowing. It was P-doping rather than La or N doping that played a key role in inhibiting both anatase-to-rutile phase transformation and crystal growth, in stabilizing the mesoporous textural properties, and in increasing the content of surface bridging hydroxyl. Moreover, the tri-doping significantly enhanced the surface Ti^(4+)-O^(2-)-Ti^(4+)-O^(-·) species. All above-mentioned factors cooperated to result in the enhanced photoactivity of the tri-doped TiO_2. As a result, it exhibited the highest photoactivity towards the degradation of 4-chlorophenol(4-CP) under visible-light irradiation among all samples, which was much superior to commercial P25 TiO_2.展开更多
文摘lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation.
基金Project supported by the Natural Science Foundation of Heilongjiang Province(E201323)the Science and Technology Research Program of Education Bureau of Heilongjiang Province(12531213)
文摘Effects of La, N, and P doping on the structural, electronic and optical properties of TiO_2 synthesized from TiCl_4 hydrolysis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission electron microscopy, N_2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-vis absorbance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy. The results showed that the presence of La in the tri-doped TiO_2 played a predominant role in inhibiting the recombination of the photogenerated electrons and holes. The existence of the substitutional N, interstitial N, and oxygen vacancies in TiO_2 lattices led to the band gap narrowing. It was P-doping rather than La or N doping that played a key role in inhibiting both anatase-to-rutile phase transformation and crystal growth, in stabilizing the mesoporous textural properties, and in increasing the content of surface bridging hydroxyl. Moreover, the tri-doping significantly enhanced the surface Ti^(4+)-O^(2-)-Ti^(4+)-O^(-·) species. All above-mentioned factors cooperated to result in the enhanced photoactivity of the tri-doped TiO_2. As a result, it exhibited the highest photoactivity towards the degradation of 4-chlorophenol(4-CP) under visible-light irradiation among all samples, which was much superior to commercial P25 TiO_2.