蒸散发是水循环和能量平衡的重要组成,在地下水监测、农业灌溉等研究中发挥重要作用,但非均匀下垫面会导致遥感估算的水热通量产生空间尺度误差。以Sentinel数据作为基础数据,利用EFAF(Evaporative Fraction and Area Fraction)方法和...蒸散发是水循环和能量平衡的重要组成,在地下水监测、农业灌溉等研究中发挥重要作用,但非均匀下垫面会导致遥感估算的水热通量产生空间尺度误差。以Sentinel数据作为基础数据,利用EFAF(Evaporative Fraction and Area Fraction)方法和温度降尺度法校正水热通量偏差,并且对比两种方法的差异。研究结果表明:EFAF方法和温度降尺度法的精度不相上下,决定系数R^(2)约为0.86,平均偏差MBE约为18 W/m^(2),均方根误差RMSE约为64 W/m^(2),两种方法的精度都高于未校正潜热通量的精度,对于校正非均匀下垫面造成的潜热通量偏差有一定的效果。EFAF方法估算的潜热通量在像元尺度上的分布与土地分类数据一致,在区域尺度上和未校正的潜热通量分布一致。温度降尺度法估算的潜热通量在像元尺度上与地表温度的分布高度相似,其空间细节信息更加丰富,局部特征明显。展开更多
文摘蒸散发是水循环和能量平衡的重要组成,在地下水监测、农业灌溉等研究中发挥重要作用,但非均匀下垫面会导致遥感估算的水热通量产生空间尺度误差。以Sentinel数据作为基础数据,利用EFAF(Evaporative Fraction and Area Fraction)方法和温度降尺度法校正水热通量偏差,并且对比两种方法的差异。研究结果表明:EFAF方法和温度降尺度法的精度不相上下,决定系数R^(2)约为0.86,平均偏差MBE约为18 W/m^(2),均方根误差RMSE约为64 W/m^(2),两种方法的精度都高于未校正潜热通量的精度,对于校正非均匀下垫面造成的潜热通量偏差有一定的效果。EFAF方法估算的潜热通量在像元尺度上的分布与土地分类数据一致,在区域尺度上和未校正的潜热通量分布一致。温度降尺度法估算的潜热通量在像元尺度上与地表温度的分布高度相似,其空间细节信息更加丰富,局部特征明显。