In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four me...In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.展开更多
A stable noise-like(NL)mode-locked Tm-doped fiber laser(TDFL)relying on a nonlinear optical loop mirror(NOLM)was experimentally presented.Different from the previous NL mode-locked TDFL with NOLM,the entire polarizati...A stable noise-like(NL)mode-locked Tm-doped fiber laser(TDFL)relying on a nonlinear optical loop mirror(NOLM)was experimentally presented.Different from the previous NL mode-locked TDFL with NOLM,the entire polarization-maintaining(PM)fiber construction was utilized in our laser cavity,which makes the oscillator have a better resistance to environmental perturbations.The robust TDFL can deliver stable bound-state NL pulses with a pulse envelope tunable from〜14.1 ns to〜23.6 ns and maximum pulse energy of〜40.3 nj at a repetition rate of〜980.6 kHz.Meanwhile,the all-PM fiber laser shows good power stability[less than〜0.7%)and repeatability.展开更多
基金Supported by the National Key R&D Program of China under Grant No 2016YFA0401100the National Natural Science Foundation of China under Grant No 61575129the National High-Technology Research and Development Program of China under Grant No 2015AA021102
文摘In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61905146)the China Postdoctoral Science Foundation (No. 2020M682864)the Shenzhen Key Project for Technology Development (Nos. JSGG20190819175801678 and JSGG20191129105838333)
文摘A stable noise-like(NL)mode-locked Tm-doped fiber laser(TDFL)relying on a nonlinear optical loop mirror(NOLM)was experimentally presented.Different from the previous NL mode-locked TDFL with NOLM,the entire polarization-maintaining(PM)fiber construction was utilized in our laser cavity,which makes the oscillator have a better resistance to environmental perturbations.The robust TDFL can deliver stable bound-state NL pulses with a pulse envelope tunable from〜14.1 ns to〜23.6 ns and maximum pulse energy of〜40.3 nj at a repetition rate of〜980.6 kHz.Meanwhile,the all-PM fiber laser shows good power stability[less than〜0.7%)and repeatability.