By combining the AdaBoost modular locality preserving projection (AMLPP) algorithm and the locally linear regression (LLR) algorithm, a novel pose-invariant algorithm is proposed to realize high-accuracy face reco...By combining the AdaBoost modular locality preserving projection (AMLPP) algorithm and the locally linear regression (LLR) algorithm, a novel pose-invariant algorithm is proposed to realize high-accuracy face recognition under different poses. In the training stage of this algorithm, the AMLPP is employed to select the crucial frontal blocks and construct effective strong classifier. According to the selected frontal blocks and the corresponding non-frontal blocks, LLR is then applied to learn the linear mappings which will be used to convert the non-frontal blocks to visual frontal blocks. During the testing of the learned linear mappings, when a non-frontal face image is inputted, the non-frontal blocks corresponding to the selected frontal blocks are extracted and converted to the visual frontal blocks. The generated virtual frontal blocks are finally fed into the strong classifier constructed by AMLPP to realize accurate and efficient face recognition. Our algorithm is experimentally compared with other pose-invariant face recognition algorithms based on the Bosphorus database. The results show a significant improvement with our proposed algorithm.展开更多
A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), e...A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.展开更多
The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (...The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (PLS) regression, and then trained and selected from this feature subset in Boosting. The experiments show that the proposed PLS-based feature-selection method outperforms the current feature ranking method and the random sampling method.展开更多
基金Supported by the National Natural Science Foundation of China(60772066)
文摘By combining the AdaBoost modular locality preserving projection (AMLPP) algorithm and the locally linear regression (LLR) algorithm, a novel pose-invariant algorithm is proposed to realize high-accuracy face recognition under different poses. In the training stage of this algorithm, the AMLPP is employed to select the crucial frontal blocks and construct effective strong classifier. According to the selected frontal blocks and the corresponding non-frontal blocks, LLR is then applied to learn the linear mappings which will be used to convert the non-frontal blocks to visual frontal blocks. During the testing of the learned linear mappings, when a non-frontal face image is inputted, the non-frontal blocks corresponding to the selected frontal blocks are extracted and converted to the visual frontal blocks. The generated virtual frontal blocks are finally fed into the strong classifier constructed by AMLPP to realize accurate and efficient face recognition. Our algorithm is experimentally compared with other pose-invariant face recognition algorithms based on the Bosphorus database. The results show a significant improvement with our proposed algorithm.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (PLS) regression, and then trained and selected from this feature subset in Boosting. The experiments show that the proposed PLS-based feature-selection method outperforms the current feature ranking method and the random sampling method.