期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于聚类和类重叠分析的近邻分类 被引量:2
1
作者 刘杜钢 《计算机系统应用》 2015年第9期1-8,共8页
k近邻分类(k NN)是一种简单而有效的非参数分类算法,但存在着参数需要人工确定,没有显式构建分类模型造成存储空间大、分类效率低,且易受到"维灾"效应影响等缺点.针对这些缺点,提出一种高效的近邻分类新方法,构造了两个新的... k近邻分类(k NN)是一种简单而有效的非参数分类算法,但存在着参数需要人工确定,没有显式构建分类模型造成存储空间大、分类效率低,且易受到"维灾"效应影响等缺点.针对这些缺点,提出一种高效的近邻分类新方法,构造了两个新的近邻分类器.新方法使用由K均值聚类产生的优化的簇原型集合为分类模型,减少了存储空间的同时提高了分类效率;提出三种类重叠分析策略并引入模糊基准度量以减轻维灾影响.以该分类模型学习方法为基础,提出一种新的k NN分类器和组合朴素贝叶斯的新分类器,算法涉及的参数都可以自动确定.在人工和现实数据集上进行的实验表明,新分类器具有良好的分类效率和分类准确率. 展开更多
关键词 近邻分类 K均值聚类 簇原型 类重叠分析 模糊基准度量
下载PDF
基于改进的倾向得分估计的无偏推荐模型 被引量:4
2
作者 骆锦潍 刘杜钢 +1 位作者 潘微科 明仲 《计算机应用》 CSCD 北大核心 2021年第12期3508-3514,共7页
现实中推荐系统通常遭受着各种各样的偏置问题,例如曝光偏置、位置偏置和选择偏置。一个忽略偏置问题的推荐模型不能反映推荐系统的真实性能,且对于用户而言可能是不可信任的。先前的工作已经表明基于倾向得分估计的推荐模型能够有效缓... 现实中推荐系统通常遭受着各种各样的偏置问题,例如曝光偏置、位置偏置和选择偏置。一个忽略偏置问题的推荐模型不能反映推荐系统的真实性能,且对于用户而言可能是不可信任的。先前的工作已经表明基于倾向得分估计的推荐模型能够有效缓解隐式反馈数据的曝光偏置,但是通常只考虑通过物品信息来估计倾向得分,这可能导致倾向得分估计不准确。为了提高倾向得分估计的准确性,提出配对倾向得分估计(MPE)方法。具体来说,该方法引入了用户流行度偏好的概念,通过计算用户流行度偏好和物品流行度的配对程度来对样本曝光率进行更加精确的建模,最后将提出的估计方法和一个主流的传统推荐模型以及一个无偏推荐模型进行集成并和包括前两者的三个基线模型进行对比。在公开数据集上的实验结果表明,结合MPE方法后的模型分别相比对应的基线模型在召回率、折损累计增益(DCG)和平均准确率(MAP)这三个评估指标上均有显著的提升;此外,通过实验结果还观察到性能的增益有很大一部分来自长尾物品,可见所提方法有助于提升推荐物品的多样性与覆盖率。 展开更多
关键词 推荐系统 隐式反馈 曝光偏置 倾向得分估计 矩阵分解 长尾物品 用户流行度偏好
下载PDF
面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器
3
作者 林子楠 刘杜钢 +1 位作者 潘微科 明仲 《信息安全学报》 CSCD 2021年第5期110-127,共18页
一元反馈建模在推荐系统中的应用非常广泛,例如点击预测和购买预测等。然而,推荐系统作为一个闭环的反馈系统,在用户与系统的交互过程中可能存在着多种偏置问题,例如位置偏置、流行偏置等,进而导致用户的反馈数据存在有偏性。现有的大... 一元反馈建模在推荐系统中的应用非常广泛,例如点击预测和购买预测等。然而,推荐系统作为一个闭环的反馈系统,在用户与系统的交互过程中可能存在着多种偏置问题,例如位置偏置、流行偏置等,进而导致用户的反馈数据存在有偏性。现有的大部分推荐模型都只基于这样的有偏数据进行构建,忽略了偏置的影响,进而导致推荐结果是次优的。目前已有的偏置消除方法大致可以分为基于反事实学习的方法、基于启发式的方法和基于无偏数据增强的方法。其中,基于无偏数据增强的方法通常被认为在稳定性和准确性方面表现较好。本文重点研究了推荐系统中一元反馈的偏置问题,通过引入由一种特定策略收集的无偏数据,结合有偏数据进行联合建模,从而得到更准确和无偏的推荐模型。具体而言,本文从多任务学习的角度对问题进行建模,将有偏数据、无偏数据以及它们的并集当作三种相互关联的信号,并设计了三个不同但相关的学习任务。变分自编码器是目前最先进的一元反馈建模方法之一,有着独特的建模方式,从而使得它在很多问题中取得了优越的推荐效果。本文基于变分自编码器提出了一种新的推荐模型,即三任务变分自编码器(Tri-VAE)。该模型包含三个变分自编码器,分别对三种信号进行重构。三个变分自编码器之间共享同一个编码器和同一个解码器。此外,本文还设计了特征校正模块和标签增强模块以加强任务之间的关联。其中,特征校正模块用来校正用户的潜在特征,得到更无偏的潜在特征,进而从潜在特征的角度缓解偏置的影响。标签增强模块用于生成可靠性较高的伪标签并加以利用,进而更有效地利用无偏数据中的信息。在Yahoo!R3和Coat Shopping两个公开数据集上的实验结果表明,所提出的模型相比于目前最新的基线模型在绝大多数情况下取得了显著的效果提升。为了进一步研究所提出的模型,本文进行了消融实验、超参数敏感性分析和收敛性分析,还对特征校正模块的有效性进行了探讨。 展开更多
关键词 偏置问题 联合建模 多任务学习 变分自编码器 推荐系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部