We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin ...We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional (3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross-Pitaevskii equations in imaginary time.展开更多
索利斯(David J Thouless)、霍尔丹(F Duncan M Haldane)和科斯特里兹(J Michael Kosterlitz)获得了2016年诺贝尔物理学奖,获奖主要是因为在拓扑相变和物质拓扑方面作出了开创性的工作.很多物理系统的一些重要性质和与拓扑结构直接相关...索利斯(David J Thouless)、霍尔丹(F Duncan M Haldane)和科斯特里兹(J Michael Kosterlitz)获得了2016年诺贝尔物理学奖,获奖主要是因为在拓扑相变和物质拓扑方面作出了开创性的工作.很多物理系统的一些重要性质和与拓扑结构直接相关的联系最近被人们发现,并且可以用拓扑不变量进行分类,从而解释一些之前物理学无法解释的难题.这个研究领域现在取得了非常大的进展,为了设计新系统,新材料我们可以从另外一个角度—拓扑角度来理解物理系统从而可以为量子计算机的实现提供帮助.本文将探究冷原子系统里的拓扑学.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11374036)the National Basic Research Program of China(Grant No.2012CB821403)
文摘We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2 × S1 space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional (3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross-Pitaevskii equations in imaginary time.
文摘索利斯(David J Thouless)、霍尔丹(F Duncan M Haldane)和科斯特里兹(J Michael Kosterlitz)获得了2016年诺贝尔物理学奖,获奖主要是因为在拓扑相变和物质拓扑方面作出了开创性的工作.很多物理系统的一些重要性质和与拓扑结构直接相关的联系最近被人们发现,并且可以用拓扑不变量进行分类,从而解释一些之前物理学无法解释的难题.这个研究领域现在取得了非常大的进展,为了设计新系统,新材料我们可以从另外一个角度—拓扑角度来理解物理系统从而可以为量子计算机的实现提供帮助.本文将探究冷原子系统里的拓扑学.