本文基于经验小波变换(EWT,empirical wavelet transform)和奇异值分解(SVD,singular value decomposition)技术提出了一种齿轮的故障诊断方法.首先采用EWT方法将齿轮的振动信号分解为若干个本征模态分量(IMF),并利用这些IMF分量形成向...本文基于经验小波变换(EWT,empirical wavelet transform)和奇异值分解(SVD,singular value decomposition)技术提出了一种齿轮的故障诊断方法.首先采用EWT方法将齿轮的振动信号分解为若干个本征模态分量(IMF),并利用这些IMF分量形成向量矩阵.而后对初始向量矩阵进行奇异值分解,根据奇异值分解的三大特性,将求得的特征向量矩阵的奇异值作为齿轮振动信号的模式特征向量.最后通过建立马氏距离判别函数判断齿轮的振动情况和故障类型.通过对实际实验数据的分析,证明了该方法在齿轮故障诊断中有效性.展开更多
针对滚动轴承高维故障特征集识别精度低的问题,提出基于线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)算法的维数约简故障诊断模型。首先结合小波包分解、时域、频域及时频域统计方法构造全面表征轴承不同故障特性...针对滚动轴承高维故障特征集识别精度低的问题,提出基于线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)算法的维数约简故障诊断模型。首先结合小波包分解、时域、频域及时频域统计方法构造全面表征轴承不同故障特性的混合域特征集,通过敏感度的特征选取方法,从混合特征集中选取轴承故障的敏感特征集,再利用LLTSA算法将高维敏感特征集约简为故障区分度更好的低维特征矢量,并用模糊C均值(Fuzzy C-means,FCM)聚类算法进行故障模式识别,本研究方法能够突出不同特征对分类的贡献率,强化敏感特征,弱化不相关特征,提升了分类精度。最后用深沟球轴承不同部位故障诊断实例验证该模型的有效性。展开更多
文摘本文基于经验小波变换(EWT,empirical wavelet transform)和奇异值分解(SVD,singular value decomposition)技术提出了一种齿轮的故障诊断方法.首先采用EWT方法将齿轮的振动信号分解为若干个本征模态分量(IMF),并利用这些IMF分量形成向量矩阵.而后对初始向量矩阵进行奇异值分解,根据奇异值分解的三大特性,将求得的特征向量矩阵的奇异值作为齿轮振动信号的模式特征向量.最后通过建立马氏距离判别函数判断齿轮的振动情况和故障类型.通过对实际实验数据的分析,证明了该方法在齿轮故障诊断中有效性.
文摘针对滚动轴承高维故障特征集识别精度低的问题,提出基于线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)算法的维数约简故障诊断模型。首先结合小波包分解、时域、频域及时频域统计方法构造全面表征轴承不同故障特性的混合域特征集,通过敏感度的特征选取方法,从混合特征集中选取轴承故障的敏感特征集,再利用LLTSA算法将高维敏感特征集约简为故障区分度更好的低维特征矢量,并用模糊C均值(Fuzzy C-means,FCM)聚类算法进行故障模式识别,本研究方法能够突出不同特征对分类的贡献率,强化敏感特征,弱化不相关特征,提升了分类精度。最后用深沟球轴承不同部位故障诊断实例验证该模型的有效性。