期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多尺度混合注意力胶囊网络的海洋鱼类识别 被引量:3
1
作者 许学斌 刘燊莲 +1 位作者 路龙宾 晨光 《光电子.激光》 CAS CSCD 北大核心 2022年第11期1158-1164,共7页
针对胶囊网络(capsule network,CapsNet)特征提取结构单一和数据处理中参数量过大的问题,提出多尺度混合注意力胶囊网络模型。首先,在网络初始端添加不同尺度的卷积核来多角度提取特征,并引入混合注意力机制,通过聚焦更具分辨性的特征... 针对胶囊网络(capsule network,CapsNet)特征提取结构单一和数据处理中参数量过大的问题,提出多尺度混合注意力胶囊网络模型。首先,在网络初始端添加不同尺度的卷积核来多角度提取特征,并引入混合注意力机制,通过聚焦更具分辨性的特征区域来降低复杂背景干扰。其次,采用局部剪枝算法优化动态路由,减少参数量,缩短模型训练时间。最后,在海洋鱼类数据集F4K(Fish4Knowledge)上验证,结果表明,与传统残差网络(residual network50,ResNet-50)、双线性网络(bilinear convolutional neural network,B-CNN)、分层精简双线性注意力网络(spatial transformation network and hierarchical compact bilinear pooling,STN-H-CBP)以及CapsNet模型相比,该算法识别精度为98.65%,比ResNet-50模型提升了5.92%;训练时间为2.2 h,相比于CapsNet缩短了近40 min,验证了该算法的可行性。 展开更多
关键词 胶囊网络(CapsNet) 图像识别 动态路由算法 注意力机制 多卷积核
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部