期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
热连轧带钢厚度缺陷溯源研究及应用 被引量:3
1
作者 李维刚 石林 刘玮汲 《中国冶金》 CAS CSCD 北大核心 2024年第1期99-108,共10页
在带钢热连轧生产过程中,终轧厚度精度是体现带钢产品质量的关键指标之一。带钢厚度控制过程涉及多个模型,具有多变量、强耦合、非线性等复杂性,是热连轧带钢L2过程控制精度的最终体现。实际生产中,厚度缺陷时有发生,形成缺陷的原因复... 在带钢热连轧生产过程中,终轧厚度精度是体现带钢产品质量的关键指标之一。带钢厚度控制过程涉及多个模型,具有多变量、强耦合、非线性等复杂性,是热连轧带钢L2过程控制精度的最终体现。实际生产中,厚度缺陷时有发生,形成缺陷的原因复杂多样,目前主要依赖事后的人工分析,其难度大、效率低。为此,研发了热连轧带钢厚度缺陷的自动溯源模型,针对轧制完成后出现头部厚度缺陷的带钢产品,识别和分析厚度缺陷的形成机理,追溯和确定导致厚度缺陷的主要原因。融合资深数模专家的分析经验,通过深入挖掘带钢厚度控制背后的模型机理、理顺带钢厚度与各轧制参数之间的耦合关系,建立了热轧带钢厚度缺陷溯源的分析流程,构建了以辊缝模型设定不准、轧制力模型不准、轧制模型参数设定异常为核心的分析模块。最后,将国内某1780 mm热连轧机组连续3个月生产的带钢数据用于模型性能测试,结果表明,带钢厚度缺陷溯源的准确率达到90.27%,基本满足实际生产需求,实现了热连轧带钢厚度缺陷的自动溯源,大大提高了厚度缺陷溯源的分析效率。 展开更多
关键词 热连轧带钢 头部厚度 厚度控制 自动溯源 轧制机理
原文传递
基于图卷积网络的热轧带钢轧制力预测 被引量:6
2
作者 李维刚 刘玮汲 +1 位作者 谢璐 赵云涛 《钢铁》 CAS CSCD 北大核心 2023年第3期89-96,127,共9页
热连轧生产为多钢种、多规格混杂的带钢连续轧制过程,现有的机器学习方法不能考虑各带钢层的影响,将各带钢的轧制力预测过程视为独立的而不是关联的,这种做法不符合实际情况。提出一种预测带钢轧制力的梯度提升树-图卷积神经网络(gradie... 热连轧生产为多钢种、多规格混杂的带钢连续轧制过程,现有的机器学习方法不能考虑各带钢层的影响,将各带钢的轧制力预测过程视为独立的而不是关联的,这种做法不符合实际情况。提出一种预测带钢轧制力的梯度提升树-图卷积神经网络(gradient boosting decision tree-graph convolutional networks, GBDT-GCN)模型。首先,构建用于轧制力预测的带钢关系图结构,将数据集中的每块带钢作为图结构中的节点,根据带钢的轧制时序、层别关系生成各带钢节点之间的连接边,将连续轧制、相同层别的带钢关联起来;接着,将图结构输入结构调整后的GCN模型,采用平均绝对误差作为损失函数进行模型训练,采用GBDT对轧制力的影响因素进行重要性排序,并根据GCN模型的预测精度变化筛选出重要的因子作为最终的节点特征向量。最后,利用国内某热连轧机组的实际生产数据进行试验验证,结果表明,GBDT-GCN模型在测试集上的平均绝对误差为405.6 kN,相对误差在±10%以内的数据所占比例为91.5%,相较于传统SIMS模型、RF随机森林算法、MLP多层感知机模型,利用带钢关系图结构预测轧制力的GBDT-GCN模型具有更高的预报精度。 展开更多
关键词 热连轧带钢 轧制力预测 特征选择 梯度提升树 图卷积神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部