目的:利用机器学习算法预测影响脑卒中患者日常生活自理能力(activities of daily living,ADL)的风险因素,为其ADL管理决策提供参考。方法:对2015年1月—2019年2月在南京医科大学附属第一医院康复医学中心治疗的423例脑卒中患者进行回...目的:利用机器学习算法预测影响脑卒中患者日常生活自理能力(activities of daily living,ADL)的风险因素,为其ADL管理决策提供参考。方法:对2015年1月—2019年2月在南京医科大学附属第一医院康复医学中心治疗的423例脑卒中患者进行回顾性分析。根据Barthel指数(Barthel index,BI)评定量表,将患者分为ADL较好组(BI≥60分)和ADL较差组(BI<60分),并进行数据预处理。采用共线性诊断及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)筛选特征变量。选择逻辑回归、支持向量机、随机森林(random forest,RF)、极限梯度提升及K最近邻5种机器学习算法进行预测建模,十倍交叉验证后,使用受试者工作特征曲线、受试者工作特征曲线下面积(area under curve,AUC)、精确召回率曲线、精确召回率曲线下的面积(area under the precision recall curve,PRAUC)、准确率、灵敏度、特异度分别对模型进行综合评估,引入Shapley加性解释(Shapley additive explanation,SHAP)对最优机器学习模型进行可解释化处理。结果:经LASSO回归分析后,确定16个特征变量用于构建机器学习模型。RF模型具有最高的AUC(0.74)、PRAUC(0.64)、准确率(0.97)、灵敏度(0.75)和特异度(0.97)。SHAP模型解释性分析显示,对ADL贡献度前5的特征中,Brunnstrom分期(下肢)的影响最为显著,其次是Brunnstrom分期(上肢)、D-二聚体、血清白蛋白水平及年龄。结论:RF模型预测脑卒中患者ADL的效能最优,为脑卒中患者ADL管理决策提供了有价值的参考。展开更多
文摘目的:利用机器学习算法预测影响脑卒中患者日常生活自理能力(activities of daily living,ADL)的风险因素,为其ADL管理决策提供参考。方法:对2015年1月—2019年2月在南京医科大学附属第一医院康复医学中心治疗的423例脑卒中患者进行回顾性分析。根据Barthel指数(Barthel index,BI)评定量表,将患者分为ADL较好组(BI≥60分)和ADL较差组(BI<60分),并进行数据预处理。采用共线性诊断及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)筛选特征变量。选择逻辑回归、支持向量机、随机森林(random forest,RF)、极限梯度提升及K最近邻5种机器学习算法进行预测建模,十倍交叉验证后,使用受试者工作特征曲线、受试者工作特征曲线下面积(area under curve,AUC)、精确召回率曲线、精确召回率曲线下的面积(area under the precision recall curve,PRAUC)、准确率、灵敏度、特异度分别对模型进行综合评估,引入Shapley加性解释(Shapley additive explanation,SHAP)对最优机器学习模型进行可解释化处理。结果:经LASSO回归分析后,确定16个特征变量用于构建机器学习模型。RF模型具有最高的AUC(0.74)、PRAUC(0.64)、准确率(0.97)、灵敏度(0.75)和特异度(0.97)。SHAP模型解释性分析显示,对ADL贡献度前5的特征中,Brunnstrom分期(下肢)的影响最为显著,其次是Brunnstrom分期(上肢)、D-二聚体、血清白蛋白水平及年龄。结论:RF模型预测脑卒中患者ADL的效能最优,为脑卒中患者ADL管理决策提供了有价值的参考。