-
题名教学中应重视培养直觉思维能力
被引量:3
- 1
-
-
作者
刘琴恩
黄伟华
-
机构
上海市浦光中学
上海市交大附中
-
出处
《数学教学》
北大核心
1996年第2期9-12,共4页
-
文摘
历史上的数学巨匠无一不肯定逻辑是证明的工具,而“直觉”是他们创造的工具,即使在数学证明之中,也离不开“直觉”. 怎样根据上海新编教材的例题、习题等来培养学生的思维能力,我们作了初步的尝试. 一、给学生创造直觉思维的条件 我们曾编制了以下两道选择题:
-
关键词
直觉思维能力
重视培养
直觉思维训练
形联
“直觉”
函数图象
教学中
一元二次不等式
退中求进
选择题
-
分类号
G633.6
[文化科学—教育学]
-
-
题名运用类比方法提高立几的复习效率
- 2
-
-
作者
刘琴恩
黄伟华
-
机构
上海浦光中学
上海交大附中
-
出处
《数学教学》
1997年第6期26-28,共3页
-
文摘
怎样提高立体几何的复习效率呢?我们利用类比的方法,取得了一些效果. 一、用类比方法加强平凡与立几知识的联系,达到把握立几知识的本质. 在空间直线、平面知识的复习时,师生共同用类比方法找出它们的异同之处。
-
关键词
类比方法
复习效率
空间直线
解题方法
三棱柱
平面外
三棱锥
特殊图形
辅助线
立体几何问题
-
分类号
G633.6
[文化科学—教育学]
-
-
题名一类不等式的联想、证明及推广
- 3
-
-
作者
刘琴恩
-
机构
上海市浦光中学
-
出处
《数学教学》
北大核心
1990年第3期6-8,21,共4页
-
文摘
解题离不开联想。当思维受阻时,必须另辟蹊径,还需联想。解题结束,看看有无解题的最佳策略?命题可否推广?怎样编造新题?更需联想。请看下题: 已知a、b、c、d∈R^+,且 a^2/1+a^2+b^2/1+b^2+c^2/1+c^2+d^2/1+d^2=1。求证:abcd≤1/9。这是一道有一定难度的不等式证明题。怎样证明呢? 第一次联想,自然会想到从条件出发。
-
关键词
不等式证明
最佳策略
请看
证法
均值不等式
三角代换
基本不等式
观察条件
换元
土里
-
分类号
G633.6
[文化科学—教育学]
-