期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5s的铝型材表面弱缺陷识别方法
被引量:
2
1
作者
张建国
高飞
+2 位作者
莘明星
左春梅
刘用文
《船舶工程》
CSCD
北大核心
2023年第6期161-166,共6页
针对采用传统的机器视觉方法识别铝型材表面弱缺陷存在的效率低和精度差的问题,提出一种将数据增强与YOLOv5s相结合的铝型材表面弱缺陷识别方法。采用anchor-free方法简化人工设计YOLOv5参数的步骤,降低检测复杂度;利用解耦检测器解决YO...
针对采用传统的机器视觉方法识别铝型材表面弱缺陷存在的效率低和精度差的问题,提出一种将数据增强与YOLOv5s相结合的铝型材表面弱缺陷识别方法。采用anchor-free方法简化人工设计YOLOv5参数的步骤,降低检测复杂度;利用解耦检测器解决YOLOv5s检测中分类与回归任务冲突的问题,加快损失函数的收敛速度。通过优化算法的边界框回归损失函数,提高算法模型的定位精度;同时引入γ参数解决弱缺陷样本不平衡的问题。通过图像马赛克与像素混合方法提升模型对弱缺陷图像的识别能力。试验结果表明,改进算法的检测平均精度均值为93.3%,检测速度为41帧/秒,能提高船舶类铝型材弱缺陷检测的效率和自动化程度。
展开更多
关键词
铝型材表面
弱缺陷
特征图
YOLOv5
数据增强
下载PDF
职称材料
题名
基于改进YOLOv5s的铝型材表面弱缺陷识别方法
被引量:
2
1
作者
张建国
高飞
莘明星
左春梅
刘用文
机构
上海应用技术大学机械工程学院
上海船舶设备研究所
上海轩田工业设备有限公司
出处
《船舶工程》
CSCD
北大核心
2023年第6期161-166,共6页
基金
上海科技成果转化促进会联盟计划——难题招标专项资助项目(LM201770)。
文摘
针对采用传统的机器视觉方法识别铝型材表面弱缺陷存在的效率低和精度差的问题,提出一种将数据增强与YOLOv5s相结合的铝型材表面弱缺陷识别方法。采用anchor-free方法简化人工设计YOLOv5参数的步骤,降低检测复杂度;利用解耦检测器解决YOLOv5s检测中分类与回归任务冲突的问题,加快损失函数的收敛速度。通过优化算法的边界框回归损失函数,提高算法模型的定位精度;同时引入γ参数解决弱缺陷样本不平衡的问题。通过图像马赛克与像素混合方法提升模型对弱缺陷图像的识别能力。试验结果表明,改进算法的检测平均精度均值为93.3%,检测速度为41帧/秒,能提高船舶类铝型材弱缺陷检测的效率和自动化程度。
关键词
铝型材表面
弱缺陷
特征图
YOLOv5
数据增强
Keywords
aluminum profile surface
weak defect
feature map
YOLOv5
data enhancement
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5s的铝型材表面弱缺陷识别方法
张建国
高飞
莘明星
左春梅
刘用文
《船舶工程》
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部