Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and g...Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.展开更多
基金supported financially by the National Key Research and Development Program of China(Grant No.2023YFB4402301)the National Science Fund for Distinguished Young Scholars(Grant No.52025022)+3 种基金the National Natural Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,11974072,52372137,and 52272140)the“111”Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Grant Nos.2412022QD036 and 2412023YQ004)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC,and 20210509045RQ)。
文摘Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.