利用NECP/NCAR FNL客观分析资料驱动中尺度模式WRF,通过4个数值试验模拟分析了2010年不同气象条件下(3月、6月、9月和12月),中国华南地区排放的示踪物向北极地区传输的总量、传输特征及传输机制。模拟结果表明,12月传输到北极地区的示...利用NECP/NCAR FNL客观分析资料驱动中尺度模式WRF,通过4个数值试验模拟分析了2010年不同气象条件下(3月、6月、9月和12月),中国华南地区排放的示踪物向北极地区传输的总量、传输特征及传输机制。模拟结果表明,12月传输到北极地区的示踪物最多,约达到排放总量的44?;9月和6月的次之,约分别为7.5?和7?;3月的最少,只有0.105?。12月,示踪物传输到北极地区所需的时间最短,约为3天;9月和6月分别需要5天和6天;而3月,则需要9天时间。另外,不同月份示踪物传输到北极地区的主要通道所在高度也不同。3月主要集中在850~700 h Pa之间,9月在400~200 h Pa之间,而6月和12月在850 h Pa和200 h Pa的高度上都有浓度较高的传输通道出现。进一步分析发现,示踪物的传输路径主要受环流场控制。较强的经向南风和气旋系统有利于示踪物向北极地区传输;东亚大槽是导致12月排放的示踪物在较短时间内向北极地区传输较多的重要原因。展开更多
文摘利用NECP/NCAR FNL客观分析资料驱动中尺度模式WRF,通过4个数值试验模拟分析了2010年不同气象条件下(3月、6月、9月和12月),中国华南地区排放的示踪物向北极地区传输的总量、传输特征及传输机制。模拟结果表明,12月传输到北极地区的示踪物最多,约达到排放总量的44?;9月和6月的次之,约分别为7.5?和7?;3月的最少,只有0.105?。12月,示踪物传输到北极地区所需的时间最短,约为3天;9月和6月分别需要5天和6天;而3月,则需要9天时间。另外,不同月份示踪物传输到北极地区的主要通道所在高度也不同。3月主要集中在850~700 h Pa之间,9月在400~200 h Pa之间,而6月和12月在850 h Pa和200 h Pa的高度上都有浓度较高的传输通道出现。进一步分析发现,示踪物的传输路径主要受环流场控制。较强的经向南风和气旋系统有利于示踪物向北极地区传输;东亚大槽是导致12月排放的示踪物在较短时间内向北极地区传输较多的重要原因。